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r é s u m é

On détermine la division de l’algèbre de Dickson par le module instable de Steinberg dans
la catégorie des modules instables sur l’algèbre de Steenrod modulo 2.
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1. Introduction

We work in the category U of unstable modules over the mod-2 Steenrod algebra A [8]. For each H ∈ U of finite type,
let (− : H)U denote the left adjoint functor of the endofunctor − ⊗ H : U → U . For V an elementary Abelian 2-group, the
famous Lannes’ functor T V is the division by H∗V [5]. Here and in the sequel, H∗ denotes the mod-2 singular cohomology
functor. For V , W two elementary Abelian 2-groups, the purpose of this note is to determine (DW : LV )U where DW :=
H∗W Aut(W ) is the Dickson algebra [1] and LV , to be defined below, is the indecomposable summand of the Steinberg
summand MV of H∗V [7]. If dim V = k then LV is also denoted by Lk and we use the same convention for all other
notations admitting an elementary Abelian 2-group as index.

Let us explain the motivation for the determination of (DW : LV )U . In [2] we study the cohomotopy group of a spectrum,
L′(n), n ∈N, whose mod-2 cohomology, L′

n , is an unstable module that has the following minimal U -injective resolution:

0 → L′
n → Ln → Ln−1 ⊗ J (1) → ·· · → L1 ⊗ J

(
2n−1 − 1

) → J
(
2n − 1

) → 0.

Here J (k), k ∈ N, is the Brown–Gitler module which corepresents the functor M �→ Hom(Mk,F2) [8]. We have spectral
sequences computing the cohomotopy of L′(n) [2]:

Extr
U
(
DsΣ

−t
Z/2, L′

n

) �⇒ Extr+s
M

(
Σ−t

Z/2, L′
n

) �⇒ [
L′(n),Σr+s−t S0].
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Here M is the category of A-modules and A-linear maps of degree zero and Ds the s-th derived functor of the destabilisa-
tion functor D : M → U [6] which is left adjoint to the inclusion U ↪→ M. In order to compute Ext∗U (DsΣ

−t
Z/2, L′

n) using
the injective resolution above, we need to know the vector space HomU (DsΣ

−t
Z/2, Lk ⊗ J (2n−k − 1)). By adjunction, we

need to know the division (DsΣ
−t
Z/2 : Lk)U . Lannes and Zarati showed in [6] that for M an unstable module, there is an

isomorphism DsΣ
1−s M ∼= Σ Rs M where Rs is the Singer functor [6]. In particular, for s−t � 1, DsΣ

−t
Z/2 ∼= Σ RsΣ

s−t−1
Z/2.

The functor Rs associates to Z/2 the Dickson algebra Ds and to an unstable module M a certain submodule of Ds ⊗ M . One
is led to the determination of (RsZ/2 : Lk)U ∼= (Ds : Lk)U .

Here is the main result of this note.

Theorem 1. There is an isomorphism of unstable modules: (RsZ/2 : Lk)U ∼= Rs−k(Mk).

Lannes and Zarati showed in [6] that there is a natural short exact sequence 0 → RsΣM → Σ Rs M → ΣΦRs−1 M → 0
for each unstable module M . By Theorem 1 and by induction on t ∈ N, one gets (RsΣ

t
Z/2 : Lk)U ∼= Rs−k(Σ

t Mk). As the
functors Rs and Rs−k are exact and commute with colimits [6], it follows that (Rs A : Lk)U ∼= Rs−k(A ⊗ Mk) if A is a locally
finite unstable module.

Theorem 1 will be proved in Section 2, basing essentially on two technical lemmas whose proofs will be given in
Section 3.

2. Proof of Theorem 1

Given an elementary Abelian 2-group V , i.e. a finite F2-vector space, the semi-group End(V ) acts naturally on the left
of V , and thus on the right of V ∗ and H∗V by transposition. The right action of Aut(V ) on V ∗ and H∗V can be made into
a left action by contragredient duality: (g f )(v) = f (g−1 v), g ∈ Aut(V ), f ∈ V ∗ , v ∈ V .

In order to calculate (DW : LV )U , we recall that (H∗W : H∗V )U ∼= F
V ∗⊗W
2 ⊗ H∗W and this is in fact an End(V ) ×

End(W )-equivariant isomorphism. This can be obtained by using the commutation of Lannes’ functor T V with the universal
enveloping functor U : U →K [8]. The isomorphism is adjoint to the following composition:

H∗W �−→ H∗W ⊗ H∗W h⊗Id−−−→ [
H∗V ⊗ F

V ∗⊗W
2

] ⊗ H∗W

where � is the coproduct and h is adjoint to the natural map:

F2
[
Hom(V , W )

] ⊗ H∗W ∼= HomU
(

H∗W , H∗V
) ⊗ H∗W → H∗V .

Now let eλ be a primitive idempotent of F2[End(V )] and Lλ := (H∗V )eλ the indecomposable direct summand of H∗V
associated with eλ . Here we use the right action of End(V ) on H∗V . One gets then:

(
H∗W : Lλ

) ∼= (
eλF

V ∗⊗W
2

) ⊗ H∗W .

As (− : Lλ)U commutes with taking invariant (as in the case of T V [8]), one gets:

(DW : Lλ)U ∼= [(
eλF

V ∗⊗W
2

) ⊗ H∗W
]Aut(W )

. (1)

Here we consider the contragredient left action of Aut(W ) on H∗W and on F
V ∗⊗W
2 . To rewrite the isomorphism (1) in a

practical way, we use the following two simple facts.

Fact 1. Let G be a group and M, N two left F2[G]-modules with M finite dimensional. Then the linear isomorphism M ⊗
N → Hom(M#, N) given by m ⊗ n �→ [ f �→ f (m)n], m ∈ M , n ∈ N , f ∈ M∗ , is G-equivariant and induces an isomorphism
(M ⊗ N)G ∼= HomF2[G](M#, N).

Here M# denotes the contragredient dual of M which is defined to be the linear dual space M∗ equipped with the left
F2[G]-module structure given by (g f )(m) = f (g−1m), f ∈ M∗ , m ∈ M .

Fact 2. Let E be a semi-group acting on the right of a finite set S . Then the composition:

F2[X]e ↪→ F2[X] x�→[ f �→ f (x)]−−−−−−−−→ (
F

X
2

)∗ �
(
eFX

2

)∗

is an isomorphism of vector spaces for each idempotent e in F2[E].

In our case, there is an isomorphism F2[V ∗ ⊗ W ]eλ
∼= (eλF

V ∗⊗W
2 )#, and this is actually an isomorphism of left

F2[Aut(W )]-modules. These above facts permit us to rewrite the isomorphism (1) as follows:

(DW : Lλ)U ∼= HomF2[Aut(W )]
(
F2

[
V ∗ ⊗ W

]
eλ, H∗W

)
. (2)

Here we consider homomorphisms between left F2[Aut(W )]-modules.
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We now specify to the division by the Steinberg summand of H∗V [7]. For this let us fix an ordered basis (v1, . . . , vk)

of V and thus identify each endomorphism of V with its representing matrix with respect to this basis. The Steinberg
idempotent [9] of F2[Aut(V )] is given by:

eV :=
∑

S∈ΣV ,B∈BV

S B,

where BV denotes the Borel subgroup of lower triangular matrices in Aut(V ) and ΣV the symmetric group on k letters
considered as the subgroup of monomial matrices in Aut(V ).

Let MV be the direct summand of H∗V associated with eV . This unstable module can be further decomposed by de-
composing the Steinberg idempotent eV in F2[End(V )]. Set ẽV := eV − eV Ĩ V eV where Ĩ V denotes the diagonal matrix
diag(1, . . . ,1,0) ∈ End(V ). Then according to [4, Remark 2.5], eV = ẽV + eV Ĩ V eV is a decomposition of eV into a sum of
primitive idempotents in F2[End(V )].

Let LV denote the indecomposable direct summand of H∗V associated with ẽV . It follows from the isomorphism (2)
that:

(DW : LV )U ∼= HomF2[Aut(W )]
(
F2

[
Hom(V , W )

]
ẽV , H∗W

)
. (3)

The following technical lemma, which is crucial for the proof of Theorem 1, implies in particular that the division (DW :
LV )U is trivial if dim V > dim W .

Lemma 2. Let M ∈ Hom(V , W ) with rank(M) < dim V . Then MẽV = 0.

We consider now the case where dim V � dim W . By Lemma 2, we have:

F2
[
Hom(V , W )

]
ẽV = F2

[
Inj(V , W )

]
ẽV ,

where Inj(V , W ) ⊂ Hom(V , W ) is the subset of monomorphisms V ↪→ W . Now it is clear that the left Aut(W )-set
Inj(V , W ) is transitive. By fixing a monomorphism α : V ↪→ W , one has Inj(V , W ) = Aut(W )α. By Lemma 2 and by transi-
tivity of Inj(V , W ), one gets:

F2
[
Hom(V , W )

]
ẽV = F2

[
Inj(V , W )

]
ẽV = F2

[
Aut(W )

]
αẽV ,

that is, F2[Hom(V , W )]ẽV is generated by αẽV as a left F2[Aut(W )]-submodule of F2[Hom(V , W )]. The isomorphism (3)
is then rewritten as follows:

(DW : LV )U ∼= HomF2[Aut(W )]
(
F2

[
Aut(W )

]
αẽV , H∗W

)
. (4)

Let Ann(αẽV ) := { f ∈ F2[Aut(W )] | f αẽV = 0} denote the annihilator ideal of αẽV . In order to describe this ideal, let
Gα = {g ∈ Aut(W ) | gα = α} be the stabiliser subgroup of α and let eα ∈ F2[Aut(W )] be an idempotent which lifts eV ∈
F2[Aut(V )] through α,

V

α

eV V

α

W
eα W ,

that is αeV = eαα.

Lemma 3. The left ideal Ann(ẽV α) of F2[Aut(W )] is generated by (1 − eα) and {1 − g | g ∈ Gα}.

Combining the isomorphism (4) with this lemma gives (DW : LV )U ∼= [eα H∗W ] ∩ [H∗W Gα ]. But it is shown in [6] that
RU (H∗V ) ∼= H∗W Gα and RU (M) ∼= [H∗U ⊗ M] ∩ RU (N) if N is an unstable module and M is a submodule of N . It follows
that:

(DW : LV )U ∼= [
H∗U ⊗ eV H∗V

] ∩ [
RU

(
H∗V

)] ∼= RU
(
eV H∗V

) ∼= RU (MV ).

Theorem 1 is proved.
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3. Proof of Lemmas 2 and 3

Using the ordered basis (v1, . . . , vk) of V , we identify the group Aut(V ) with the general linear group GLk := GLk(F2).
Recall that ẽk = ek − ek Ĩkek where Ĩk is the diagonal k × k-matrix diag(1, . . . ,1,0) and ek is the Steinberg idempotent of
F2[GLk] defined by ek = ∑

S∈Σk,B∈Bk
S B , Bk denoting the subgroup of lower triangular matrices in GLk and Σk the symmetric

group on k letters. We consider the Steinberg idempotent ek−1 of F2[GLk−1] as an element of F2[GLk] by considering GLk−1
as the subgroup of automorphisms of V preserving vk . It was proved in [3] that Ĩkek Ĩk = ek−1 Ĩkek−1 and ek−1ek = ek .

Proof of Lemma 2. We need to prove that if M is an m × k-matrix of rank less than k, then Mẽk = 0. Suppose first that the
last column of M is zero. Then Mek−1 is a sum of matrices with trivial last column. So M Ĩk = M and (Mek−1) Ĩk = Mek−1.
We have then:

Mek Ĩkek = M Ĩkek Ĩkek (as M Ĩk = M)

= Mek−1 Ĩkek−1ek (as Ĩkek Ĩk = ek−1 Ĩkek−1)

= Mek−1ek−1ek (as Mek−1 Ĩk = Mek−1)

= Mek
(
as e2

k−1 = ek−1 and ek−1ek = ek
)
.

Hence Mẽk = Mek − Mek Ĩkek = 0.
Now let M be an arbitrary m × k-matrix of rank less than k. One chooses g ∈ GLk such that the last column of N := Mg

is trivial. So Mek ∈ NF2[GLk]ek . But it is well known from the work of Steinberg [9] that F2[GLk]ek = F2[Bk]ek . Hence
Mek ∈ NF2[Bk]ek . Since ekẽk = ẽk , it follows that Mẽk ∈ NF2[Bk]ẽk . The space NF2[Bk]ẽk is trivial because, for each B ∈ Bk ,
the last column of N B is zero, which implies N Bẽk = 0 as verified above. The lemma is proved. �

We prove now Lemma 3. For this we need the following elementary fact.

Fact 3. Let G be a finite group acting on the left of a finite set S . For s ∈ S , let Ann(s) := { f ∈ F2[G] | f s = 0} denote
the annihilator ideal of s and Gs := {g ∈ G | gs = s} the stabiliser subgroup of s. Then Ann(s) is the left ideal generated by
{1 − g | g ∈ Gs}.

Proof of Lemma 3. Let f ∈ F2[Aut(W )] be an element of Ann(αẽV ), that is f αẽV = 0 in F2[End(V , W )]. So f αeV −
f αeV Ĩ V eV = 0. The first term of the left-hand side is a linear combination of monomorphisms in Hom(V , W ), while
the second is a combination of homomorphisms of rank dim V − 1; so each term vanishes, thus f αeV = 0. But αeV =
eαα, so f eαα = 0. This means that f eα belongs to the annihilator ideal Ann(α) ⊂ F2[Aut(W )] of α. Hence f ≡ f (1 −
eα) mod Ann(α). By the above fact, Ann(α) is the left ideal of F2[Aut(W )] generated by {1 − g | g ∈ Gα}, so f belongs to
the left ideal of F2[Aut(W )] generated by (1 − eα) and {1 − g | g ∈ Gα}.

The reverse inclusion is verified easily: that 1 − eα belongs to Ann(αẽV ) is because (1 − eα)αẽV = αẽV − αeV ẽV =
αẽV − αẽV = 0 and that 1 − g , g ∈ Gα , belongs to Ann(αẽV ) is because (1 − g)αẽV = (α − gα)ẽV = (α − α)ẽV = 0. The
lemma is proved. �
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