Algebra/Topology

Division of the Dickson algebra by the Steinberg unstable module ${ }^{\text {Th }}$

Division de l'algèbre de Dickson par le module instable de Steinberg

Nguyen Dang Ho Hai
University of Hue, College of Sciences, 77 Nguyen Hue Street, Hue City, Viet Nam

A R T I CLE I N F O

Article history:

Received 7 May 2013
Accepted 8 July 2013
Available online 29 July 2013
Presented by the Editorial Board

Abstract

We compute the division of the Dickson algebra by the Steinberg unstable module in the category of unstable modules over the mod-2 Steenrod algebra.

© 2013 Académie des sciences. Published by Elsevier Masson SAS. All rights reserved. R É S U M É

On détermine la division de l'algèbre de Dickson par le module instable de Steinberg dans la catégorie des modules instables sur l'algèbre de Steenrod modulo 2.
© 2013 Académie des sciences. Published by Elsevier Masson SAS. All rights reserved.

1. Introduction

We work in the category \mathcal{U} of unstable modules over the mod-2 Steenrod algebra \mathcal{A} [8]. For each $H \in \mathcal{U}$ of finite type, let $(-: H)_{\mathcal{U}}$ denote the left adjoint functor of the endofunctor $-\otimes H: \mathcal{U} \rightarrow \mathcal{U}$. For V an elementary Abelian 2-group, the famous Lannes' functor T_{V} is the division by $H^{*} V$ [5]. Here and in the sequel, H^{*} denotes the mod-2 singular cohomology functor. For V, W two elementary Abelian 2-groups, the purpose of this note is to determine $\left(D_{W}: L_{V}\right) \mathcal{U}$ where $D_{W}:=$ $H^{*} W^{\text {Aut }(W)}$ is the Dickson algebra [1] and L_{V}, to be defined below, is the indecomposable summand of the Steinberg summand M_{V} of $H^{*} V$ [7]. If $\operatorname{dim} V=k$ then L_{V} is also denoted by L_{k} and we use the same convention for all other notations admitting an elementary Abelian 2-group as index.

Let us explain the motivation for the determination of $\left(D_{W}: L_{V}\right)_{\mathcal{U}}$. In [2] we study the cohomotopy group of a spectrum, $L^{\prime}(n), n \in \mathbb{N}$, whose mod-2 cohomology, L_{n}^{\prime}, is an unstable module that has the following minimal \mathcal{U}-injective resolution:

$$
0 \rightarrow L_{n}^{\prime} \rightarrow L_{n} \rightarrow L_{n-1} \otimes J(1) \rightarrow \cdots \rightarrow L_{1} \otimes J\left(2^{n-1}-1\right) \rightarrow J\left(2^{n}-1\right) \rightarrow 0
$$

Here $J(k), k \in \mathbb{N}$, is the Brown-Gitler module which corepresents the functor $M \mapsto \operatorname{Hom}\left(M^{k}, \mathbb{F}_{2}\right)$ [8]. We have spectral sequences computing the cohomotopy of $L^{\prime}(n)$ [2]:

$$
\operatorname{Ext}_{\mathcal{U}}^{r}\left(\mathbb{D}_{s} \Sigma^{-t} \mathbb{Z} / 2, L_{n}^{\prime}\right) \Longrightarrow \operatorname{Ext}_{\mathcal{M}}^{r+s}\left(\Sigma^{-t} \mathbb{Z} / 2, L_{n}^{\prime}\right) \Longrightarrow\left[L^{\prime}(n), \Sigma^{r+s-t} S^{0}\right]
$$

[^0]Here \mathcal{M} is the category of \mathcal{A}-modules and \mathcal{A}-linear maps of degree zero and \mathbb{D}_{s} the s-th derived functor of the destabilisation functor $\mathbb{D}: \mathcal{M} \rightarrow \mathcal{U}$ [6] which is left adjoint to the inclusion $\mathcal{U} \hookrightarrow \mathcal{M}$. In order to compute Ext $\mathcal{U}^{*}\left(\mathbb{D}_{s} \Sigma^{-t} \mathbb{Z} / 2\right.$, $\left.L_{n}^{\prime}\right)$ using the injective resolution above, we need to know the vector space $\operatorname{Hom}_{\mathcal{U}}\left(\mathbb{D}_{s} \Sigma^{-t} \mathbb{Z} / 2, L_{k} \otimes J\left(2^{n-k}-1\right)\right)$. By adjunction, we need to know the division $\left(\mathbb{D}_{s} \Sigma^{-t} \mathbb{Z} / 2: L_{k}\right) \mathcal{U}$. Lannes and Zarati showed in [6] that for M an unstable module, there is an isomorphism $\mathbb{D}_{s} \Sigma^{1-s} M \cong \Sigma R_{s} M$ where R_{s} is the Singer functor [6]. In particular, for $s-t \geqslant 1, \mathbb{D}_{s} \Sigma^{-t} \mathbb{Z} / 2 \cong \Sigma R_{s} \Sigma^{s-t-1} \mathbb{Z} / 2$. The functor R_{s} associates to $\mathbb{Z} / 2$ the Dickson algebra D_{s} and to an unstable module M a certain submodule of $D_{s} \otimes M$. One is led to the determination of $\left(R_{s} \mathbb{Z} / 2: L_{k}\right)_{\mathcal{U}} \cong\left(D_{s}: L_{k}\right)_{\mathcal{U}}$.

Here is the main result of this note.
Theorem 1. There is an isomorphism of unstable modules: $\left(R_{s} \mathbb{Z} / 2: L_{k}\right) \mathcal{U} \cong R_{s-k}\left(M_{k}\right)$.
Lannes and Zarati showed in [6] that there is a natural short exact sequence $0 \rightarrow R_{s} \Sigma M \rightarrow \Sigma R_{s} M \rightarrow \Sigma \Phi R_{s-1} M \rightarrow 0$ for each unstable module M. By Theorem 1 and by induction on $t \in \mathbb{N}$, one gets $\left(R_{s} \Sigma^{t} \mathbb{Z} / 2: L_{k}\right) \mathcal{U} \cong R_{s-k}\left(\Sigma^{t} M_{k}\right)$. As the functors R_{s} and R_{s-k} are exact and commute with colimits [6], it follows that ($\left.R_{s} A: L_{k}\right) \mathcal{U} \cong R_{S-k}\left(A \otimes M_{k}\right)$ if A is a locally finite unstable module.

Theorem 1 will be proved in Section 2, basing essentially on two technical lemmas whose proofs will be given in Section 3.

2. Proof of Theorem 1

Given an elementary Abelian 2-group V, i.e. a finite \mathbb{F}_{2}-vector space, the semi-group $\operatorname{End}(V)$ acts naturally on the left of V, and thus on the right of V^{*} and $H^{*} V$ by transposition. The right action of $\operatorname{Aut}(V)$ on V^{*} and $H^{*} V$ can be made into a left action by contragredient duality: $(g f)(v)=f\left(g^{-1} v\right), g \in \operatorname{Aut}(V), f \in V^{*}, v \in V$.

In order to calculate $\left(D_{W}: L_{V}\right)_{\mathcal{U}}$, we recall that $\left(H^{*} W: H^{*} V\right)_{\mathcal{U}} \cong \mathbb{F}_{2}^{V^{*} \otimes W} \otimes H^{*} W$ and this is in fact an $\operatorname{End}(V) \times$ End (W)-equivariant isomorphism. This can be obtained by using the commutation of Lannes' functor T_{V} with the universal enveloping functor $\mathbf{U}: \mathcal{U} \rightarrow \mathcal{K}[8]$. The isomorphism is adjoint to the following composition:

$$
H^{*} W \xrightarrow{\Delta} H^{*} W \otimes H^{*} W \xrightarrow{h \otimes I d}\left[H^{*} V \otimes \mathbb{F}_{2}^{V^{*} \otimes W}\right] \otimes H^{*} W
$$

where Δ is the coproduct and h is adjoint to the natural map:

$$
\mathbb{F}_{2}[\operatorname{Hom}(V, W)] \otimes H^{*} W \cong \operatorname{Hom}_{\mathcal{U}}\left(H^{*} W, H^{*} V\right) \otimes H^{*} W \rightarrow H^{*} V
$$

Now let e_{λ} be a primitive idempotent of $\mathbb{F}_{2}[\operatorname{End}(V)]$ and $L_{\lambda}:=\left(H^{*} V\right) e_{\lambda}$ the indecomposable direct summand of $H^{*} V$ associated with e_{λ}. Here we use the right action of $\operatorname{End}(V)$ on $H^{*} V$. One gets then:

$$
\left(H^{*} W: L_{\lambda}\right) \cong\left(e_{\lambda} \mathbb{F}_{2}^{V^{*} \otimes W}\right) \otimes H^{*} W
$$

As $\left(-: L_{\lambda}\right) \mathcal{U}$ commutes with taking invariant (as in the case of T_{V} [8]), one gets:

$$
\begin{equation*}
\left(D_{W}: L_{\lambda}\right) \mathcal{U} \cong\left[\left(e_{\lambda} \mathbb{F}_{2}^{V^{*} \otimes W}\right) \otimes H^{*} W\right]^{\operatorname{Aut}(W)} \tag{1}
\end{equation*}
$$

Here we consider the contragredient left action of $\operatorname{Aut}(W)$ on $H^{*} W$ and on $\mathbb{F}_{2}^{V^{*} \otimes W}$. To rewrite the isomorphism (1) in a practical way, we use the following two simple facts.

Fact 1. Let G be a group and M, N two left $\mathbb{F}_{2}[G]$-modules with M finite dimensional. Then the linear isomorphism $M \otimes$ $N \rightarrow \operatorname{Hom}\left(M^{\#}, N\right)$ given by $m \otimes n \mapsto[f \mapsto f(m) n], m \in M, n \in N, f \in M^{*}$, is G-equivariant and induces an isomorphism $(M \otimes N)^{G} \cong \operatorname{Hom}_{\mathbb{F}_{2}[G]}\left(M^{\#}, N\right)$.

Here $M^{\#}$ denotes the contragredient dual of M which is defined to be the linear dual space M^{*} equipped with the left $\mathbb{F}_{2}[G]$-module structure given by $(g f)(m)=f\left(g^{-1} m\right), f \in M^{*}, m \in M$.

Fact 2. Let E be a semi-group acting on the right of a finite set S. Then the composition:

$$
\mathbb{F}_{2}[X] e \hookrightarrow \mathbb{F}_{2}[X] \xrightarrow{x \mapsto[f \mapsto f(x)]}\left(\mathbb{F}_{2}^{X}\right)^{*} \rightarrow\left(e \mathbb{F}_{2}^{X}\right)^{*}
$$

is an isomorphism of vector spaces for each idempotent e in $\mathbb{F}_{2}[E]$.
In our case, there is an isomorphism $\mathbb{F}_{2}\left[V^{*} \otimes W\right] e_{\lambda} \cong\left(e_{\lambda} \mathbb{F}_{2}^{V^{*} \otimes W}\right)^{\#}$, and this is actually an isomorphism of left $\mathbb{F}_{2}[\operatorname{Aut}(W)]$-modules. These above facts permit us to rewrite the isomorphism (1) as follows:

$$
\begin{equation*}
\left(D_{W}: L_{\lambda}\right)_{\mathcal{U}} \cong \operatorname{Hom}_{\mathbb{F}_{2}[\operatorname{Aut}(W)]}\left(\mathbb{F}_{2}\left[V^{*} \otimes W\right] e_{\lambda}, H^{*} W\right) \tag{2}
\end{equation*}
$$

Here we consider homomorphisms between left $\mathbb{F}_{2}[\operatorname{Aut}(W)]$-modules.

We now specify to the division by the Steinberg summand of $H^{*} V$ [7]. For this let us fix an ordered basis $\left(v_{1}, \ldots, v_{k}\right)$ of V and thus identify each endomorphism of V with its representing matrix with respect to this basis. The Steinberg idempotent [9] of $\mathbb{F}_{2}[\operatorname{Aut}(V)]$ is given by:

$$
\mathbf{e}_{V}:=\sum_{S \in \Sigma_{V}, B \in \mathrm{~B} V} S B,
$$

where B_{V} denotes the Borel subgroup of lower triangular matrices in $\operatorname{Aut}(V)$ and Σ_{V} the symmetric group on k letters considered as the subgroup of monomial matrices in $\operatorname{Aut}(V)$.

Let M_{V} be the direct summand of $H^{*} V$ associated with \mathbf{e}_{V}. This unstable module can be further decomposed by decomposing the Steinberg idempotent \mathbf{e}_{V} in $\mathbb{F}_{2}[\operatorname{End}(V)]$. Set $\tilde{\mathbf{e}}_{V}:=\mathbf{e}_{V}-\mathbf{e}_{V} \tilde{I}_{V} \mathbf{e}_{V}$ where \tilde{I}_{V} denotes the diagonal matrix $\operatorname{diag}(1, \ldots, 1,0) \in \operatorname{End}(V)$. Then according to [4, Remark 2.5], $\mathbf{e}_{V}=\tilde{\mathbf{e}}_{V}+\mathbf{e}_{V} \tilde{I}_{V} \mathbf{e}_{V}$ is a decomposition of \mathbf{e}_{V} into a sum of primitive idempotents in $\mathbb{F}_{2}[\operatorname{End}(V)]$.

Let L_{V} denote the indecomposable direct summand of $H^{*} V$ associated with $\tilde{\mathbf{e}}_{V}$. It follows from the isomorphism (2) that:

$$
\begin{equation*}
\left(D_{W}: L_{V}\right)_{\mathcal{U}} \cong \operatorname{Hom}_{\mathbb{F}_{2}[\operatorname{Aut}(W)]}\left(\mathbb{F}_{2}[\operatorname{Hom}(V, W)] \tilde{\mathbf{e}}_{V}, H^{*} W\right) \tag{3}
\end{equation*}
$$

The following technical lemma, which is crucial for the proof of Theorem 1, implies in particular that the division (D_{W} : $\left.L_{V}\right)_{\mathcal{U}}$ is trivial if $\operatorname{dim} V>\operatorname{dim} W$.

Lemma 2. Let $M \in \operatorname{Hom}(V, W)$ with $\operatorname{rank}(M)<\operatorname{dim} V$. Then $M \tilde{\mathbf{e}}_{V}=0$.

We consider now the case where $\operatorname{dim} V \leqslant \operatorname{dim} W$. By Lemma 2 , we have:

$$
\mathbb{F}_{2}[\operatorname{Hom}(V, W)] \tilde{\mathbf{e}}_{V}=\mathbb{F}_{2}[\operatorname{Inj}(V, W)] \tilde{\mathbf{e}}_{V}
$$

where $\operatorname{Inj}(V, W) \subset \operatorname{Hom}(V, W)$ is the subset of monomorphisms $V \hookrightarrow W$. Now it is clear that the left Aut (W)-set $\operatorname{Inj}(V, W)$ is transitive. By fixing a monomorphism $\alpha: V \hookrightarrow W$, one has $\operatorname{Inj}(V, W)=\operatorname{Aut}(W) \alpha$. By Lemma 2 and by transitivity of $\operatorname{Inj}(V, W)$, one gets:

$$
\mathbb{F}_{2}[\operatorname{Hom}(V, W)] \tilde{\mathbf{e}}_{V}=\mathbb{F}_{2}[\operatorname{Inj}(V, W)] \tilde{\mathbf{e}}_{V}=\mathbb{F}_{2}[\operatorname{Aut}(W)] \alpha \tilde{\mathbf{e}}_{V}
$$

that is, $\mathbb{F}_{2}[\operatorname{Hom}(V, W)] \tilde{\mathbf{e}}_{V}$ is generated by $\alpha \tilde{\mathbf{e}}_{V}$ as a left $\mathbb{F}_{2}[\operatorname{Aut}(W)]$-submodule of $\mathbb{F}_{2}[\operatorname{Hom}(V, W)]$. The isomorphism (3) is then rewritten as follows:

$$
\begin{equation*}
\left(D_{W}: L_{V}\right)_{\mathcal{U}} \cong \operatorname{Hom}_{\mathbb{F}_{2}[\operatorname{Aut}(W)]}\left(\mathbb{F}_{2}[\operatorname{Aut}(W)] \alpha \tilde{\mathbf{e}}_{V}, H^{*} W\right) \tag{4}
\end{equation*}
$$

Let $\operatorname{Ann}\left(\alpha \tilde{\mathbf{e}}_{V}\right):=\left\{f \in \mathbb{F}_{2}[\operatorname{Aut}(W)] \mid f \alpha \tilde{\mathbf{e}}_{V}=0\right\}$ denote the annihilator ideal of $\alpha \tilde{\mathbf{e}}_{V}$. In order to describe this ideal, let $G_{\alpha}=\{g \in \operatorname{Aut}(W) \mid g \alpha=\alpha\}$ be the stabiliser subgroup of α and let $\mathbf{e}_{\alpha} \in \mathbb{F}_{2}[\operatorname{Aut}(W)]$ be an idempotent which lifts $\mathbf{e}_{V} \in$ $\mathbb{F}_{2}[\operatorname{Aut}(V)]$ through α,

that is $\alpha \mathbf{e}_{V}=\mathbf{e}_{\alpha} \alpha$.

Lemma 3. The left ideal $\operatorname{Ann}\left(\tilde{\mathbf{e}}_{V} \alpha\right)$ of $\mathbb{F}_{2}[\operatorname{Aut}(W)]$ is generated by $\left(1-\mathbf{e}_{\alpha}\right)$ and $\left\{1-g \mid g \in G_{\alpha}\right\}$.

Combining the isomorphism (4) with this lemma gives ($\left.D_{W}: L_{V}\right) \mathcal{U} \cong\left[\mathbf{e}_{\alpha} H^{*} W\right] \cap\left[H^{*} W^{G_{\alpha}}\right]$. But it is shown in [6] that $R_{U}\left(H^{*} V\right) \cong H^{*} W^{G_{\alpha}}$ and $R_{U}(M) \cong\left[H^{*} U \otimes M\right] \cap R_{U}(N)$ if N is an unstable module and M is a submodule of N. It follows that:

$$
\left(D_{W}: L_{V}\right)_{\mathcal{U}} \cong\left[H^{*} U \otimes \mathbf{e}_{V} H^{*} V\right] \cap\left[R_{U}\left(H^{*} V\right)\right] \cong R_{U}\left(\mathbf{e}_{V} H^{*} V\right) \cong R_{U}\left(M_{V}\right)
$$

Theorem 1 is proved.

3. Proof of Lemmas 2 and 3

Using the ordered basis $\left(v_{1}, \ldots, v_{k}\right)$ of V, we identify the group $\operatorname{Aut}(V)$ with the general linear group $\mathrm{GL}_{k}:=\mathrm{GL}_{k}\left(\mathbb{F}_{2}\right)$. Recall that $\tilde{\mathbf{e}}_{k}=\mathbf{e}_{k}-\mathbf{e}_{k} \tilde{I}_{k} \mathbf{e}_{k}$ where \tilde{I}_{k} is the diagonal $k \times k$-matrix $\operatorname{diag}(1, \ldots, 1,0)$ and \mathbf{e}_{k} is the Steinberg idempotent of $\mathbb{F}_{2}\left[\mathrm{GL}_{k}\right]$ defined by $\mathbf{e}_{k}=\sum_{S \in \Sigma_{k}, B \in \mathrm{~B}_{k}} S B, \mathrm{~B}_{k}$ denoting the subgroup of lower triangular matrices in GL_{k} and Σ_{k} the symmetric group on k letters. We consider the Steinberg idempotent \mathbf{e}_{k-1} of $\mathbb{F}_{2}\left[\mathrm{GL}_{k-1}\right]$ as an element of $\underset{\sim}{\mathbb{I}} \mathbb{F}_{2}\left[\mathrm{GL}_{k}\right]$ by considering GL_{k-1} as the subgroup of automorphisms of V preserving v_{k}. It was proved in [3] that $\tilde{I}_{k} \mathbf{e}_{k} \tilde{I}_{k}=\mathbf{e}_{k-1} \tilde{I}_{k} \mathbf{e}_{k-1}$ and $\mathbf{e}_{k-1} \mathbf{e}_{k}=\mathbf{e}_{k}$.

Proof of Lemma 2. We need to prove that if M is an $m \times k$-matrix of rank less than k, then $M \tilde{\mathbf{e}}_{k}=0$. Suppose first that the last column of M is zero. Then $M \mathbf{e}_{k-1}$ is a sum of matrices with trivial last column. So $M \tilde{I}_{k}=M$ and $\left(M \mathbf{e}_{k-1}\right) \tilde{I}_{k}=M \mathbf{e}_{k-1}$. We have then:

$$
\begin{aligned}
M \mathbf{e}_{k} \tilde{I}_{k} \mathbf{e}_{k} & =M \tilde{I}_{k} \mathbf{e}_{k} \tilde{I}_{k} \mathbf{e}_{k} \quad\left(\text { as } M \tilde{I}_{k}=M\right) \\
& =M \mathbf{e}_{k-1} \tilde{I}_{k} \mathbf{e}_{k-1} \mathbf{e}_{k} \quad\left(\text { as } \tilde{I}_{k} \mathbf{e}_{k} \tilde{I}_{k}=\mathbf{e}_{k-1} \tilde{I}_{k} \mathbf{e}_{k-1}\right) \\
& =M \mathbf{e}_{k-1} \mathbf{e}_{k-1} \mathbf{e}_{k} \quad\left(\text { as } M \mathbf{e}_{k-1} \tilde{I}_{k}=M \mathbf{e}_{k-1}\right) \\
& =M \mathbf{e}_{k} \quad\left(\text { as } \mathbf{e}_{k-1}^{2}=\mathbf{e}_{k-1} \text { and } \mathbf{e}_{k-1} \mathbf{e}_{k}=\mathbf{e}_{k}\right) .
\end{aligned}
$$

Hence $M \tilde{\mathbf{e}}_{k}=M \mathbf{e}_{k}-M \mathbf{e}_{k} \tilde{I}_{k} \mathbf{e}_{k}=0$.
Now let M be an arbitrary $m \times k$-matrix of rank less than k. One chooses $g \in \mathrm{GL}_{k}$ such that the last column of $N:=M g$ is trivial. So $M \mathbf{e}_{k} \in N \mathbb{F}_{2}\left[\mathrm{GL}_{k}\right] \mathbf{e}_{k}$. But it is well known from the work of Steinberg [9] that $\mathbb{F}_{2}\left[\mathrm{GL}_{k}\right] \mathbf{e}_{k}=\mathbb{F}_{2}\left[\mathrm{~B}_{k}\right] \mathbf{e}_{k}$. Hence $M \mathbf{e}_{k} \in N \mathbb{F}_{2}\left[\mathrm{~B}_{k}\right] \mathbf{e}_{k}$. Since $\mathbf{e}_{k} \tilde{\mathbf{e}}_{k}=\tilde{\mathbf{e}}_{k}$, it follows that $M \tilde{\mathbf{e}}_{k} \in N \mathbb{F}_{2}\left[\mathrm{~B}_{k}\right] \tilde{\mathbf{e}}_{k}$. The space $N \mathbb{F}_{2}\left[\mathrm{~B}_{k}\right] \tilde{\mathbf{e}}_{k}$ is trivial because, for each $B \in \mathrm{~B}_{k}$, the last column of $N B$ is zero, which implies $N B \tilde{\mathbf{e}}_{k}=0$ as verified above. The lemma is proved.

We prove now Lemma 3. For this we need the following elementary fact.

Fact 3. Let G be a finite group acting on the left of a finite set S. For $s \in S$, let $\operatorname{Ann}(s):=\left\{f \in \mathbb{F}_{2}[G] \mid f s=0\right\}$ denote the annihilator ideal of s and $G_{s}:=\{g \in G \mid g s=s\}$ the stabiliser subgroup of s. Then Ann(s) is the left ideal generated by $\left\{1-g \mid g \in G_{s}\right\}$.

Proof of Lemma 3. Let $f \in \mathbb{F}_{2}[\operatorname{Aut}(W)]$ be an element of $\operatorname{Ann}\left(\alpha \tilde{\mathbf{e}}_{V}\right)$, that is $f \alpha \tilde{\mathbf{e}}_{V}=0$ in $\mathbb{F}_{2}[\operatorname{End}(V, W)]$. So $f \alpha \mathbf{e}_{V}-$ $f \alpha \mathbf{e}_{V} \tilde{I}_{V} \mathbf{e}_{V}=0$. The first term of the left-hand side is a linear combination of monomorphisms in $\operatorname{Hom}(V, W)$, while the second is a combination of homomorphisms of rank $\operatorname{dim} V-1$; so each term vanishes, thus $f \alpha \mathbf{e}_{V}=0$. But $\alpha \mathbf{e}_{V}=$ $\mathbf{e}_{\alpha} \alpha$, so $f \mathbf{e}_{\alpha} \alpha=0$. This means that $f \mathbf{e}_{\alpha}$ belongs to the annihilator ideal $\operatorname{Ann}(\alpha) \subset \mathbb{F}_{2}[\operatorname{Aut}(W)]$ of α. Hence $f \equiv f(1-$ $\left.\mathbf{e}_{\alpha}\right) \bmod \operatorname{Ann}(\alpha)$. By the above fact, $\operatorname{Ann}(\alpha)$ is the left ideal of $\mathbb{F}_{2}[\operatorname{Aut}(W)]$ generated by $\left\{1-g \mid g \in G_{\alpha}\right\}$, so f belongs to the left ideal of $\mathbb{F}_{2}[\operatorname{Aut}(W)]$ generated by $\left(1-\mathbf{e}_{\alpha}\right)$ and $\left\{1-g \mid g \in G_{\alpha}\right\}$.

The reverse inclusion is verified easily: that $1-\mathbf{e}_{\alpha}$ belongs to $\operatorname{Ann}\left(\alpha \tilde{\mathbf{e}}_{V}\right)$ is because $\left(1-\mathbf{e}_{\alpha}\right) \alpha \tilde{\mathbf{e}}_{V}=\alpha \tilde{\mathbf{e}}_{V}-\alpha \mathbf{e}_{V} \tilde{\mathbf{e}}_{V}=$ $\alpha \tilde{\mathbf{e}}_{V}-\alpha \tilde{\mathbf{e}}_{V}=0$ and that $1-g, g \in G_{\alpha}$, belongs to $\operatorname{Ann}\left(\alpha \tilde{\mathbf{e}}_{V}\right)$ is because $(1-g) \alpha \tilde{\mathbf{e}}_{V}=(\alpha-g \alpha) \tilde{\mathbf{e}}_{V}=(\alpha-\alpha) \tilde{\mathbf{e}}_{V}=0$. The lemma is proved.

References

[1] Leonard Eugene Dickson, A fundamental system of invariants of the general modular linear group with a solution of the form problem, Trans. Amer. Math. Soc. 12 (1) (1911) 75-98.
[2] Nguyen Dang Ho Hai, Lionel Schwartz, Tran Ngoc Nam, La fonction génératrice de Minc et une «conjecture de Segal» pour certains spectres de Thom, Adv. Math. 225 (3) (2010) 1431-1460.
[3] Nicholas J. Kuhn, Chevalley group theory and the transfer in the homology of symmetric groups, Topology 24 (3) (1985) 247-264.
[4] Nicholas J. Kuhn, The rigidity of $L(n)$, in: Algebraic Topology, Seattle, Wash., 1985, in: Lecture Notes in Math., vol. 1286, Springer, Berlin, 1987, pp. 286-292.
[5] Jean Lannes, Sur les espaces fonctionnels dont la source est le classifiant d'un p-groupe abélien élémentaire, Inst. Hautes Études Sci. Publ. Math. 75 (1992) 135-244. With an appendix by Michel Zisman.
[6] Jean Lannes, Saïd Zarati, Sur les foncteurs dérivés de la déstabilisation, Math. Z. 194 (1) (1987) 25-59.
[7] Stephen A. Mitchell, Stewart B. Priddy, Stable splittings derived from the Steinberg module, Topology 22 (3) (1983) 285-298.
[8] Lionel Schwartz, Unstable Modules over the Steenrod Algebra and Sullivan's Fixed Point Set Conjecture, Chicago Lectures in Mathematics, University of Chicago Press, Chicago, IL, 1994.
[9] Robert Steinberg, Prime power representations of finite linear groups, Canad. J. Math. 8 (1956) 580-591.

[^0]: 4t This note was written while the author was a postdoctoral researcher (4/2011-4/2012) at "Institut de recherche en mathématique et physique" (IRMP) and was revised while the author was a visitor (9/2012) at "Vietnam Institute for Advanced Study in Mathematics" (VIASM). The author would like to thank both institutes for their hospitality.

 E-mail address: nguyendanghohai@husc.edu.vn.
 1631-073X/\$ - see front matter © 2013 Académie des sciences. Published by Elsevier Masson SAS. All rights reserved.
 http://dx.doi.org/10.1016/j.crma.2013.07.010

