Complex Analysis
A comparison principle for the log canonical threshold
Comptes Rendus. Mathématique, Volume 351 (2013) no. 11-12, pp. 441-443.

In this note, we prove a comparison principle for the log canonical threshold of plurisubharmonic functions.

Dans cette note, nous démontrons un principe de comparaison pour le seuil log-canonique des fonctions plurisousharmoniques.

Received:
Accepted:
Published online:
DOI: 10.1016/j.crma.2013.06.013
Hiệp, Phạm Hoàng 1

1 Department of Mathematics, National University of Education, 136-Xuan Thuy, Cau Giay, Hanoi, Viet Nam
@article{CRMATH_2013__351_11-12_441_0,
     author = {Hiệp, Phạm Ho\`ang},
     title = {A comparison principle for the log canonical threshold},
     journal = {Comptes Rendus. Math\'ematique},
     pages = {441--443},
     publisher = {Elsevier},
     volume = {351},
     number = {11-12},
     year = {2013},
     doi = {10.1016/j.crma.2013.06.013},
     language = {en},
     url = {http://www.numdam.org/articles/10.1016/j.crma.2013.06.013/}
}
TY  - JOUR
AU  - Hiệp, Phạm Hoàng
TI  - A comparison principle for the log canonical threshold
JO  - Comptes Rendus. Mathématique
PY  - 2013
SP  - 441
EP  - 443
VL  - 351
IS  - 11-12
PB  - Elsevier
UR  - http://www.numdam.org/articles/10.1016/j.crma.2013.06.013/
DO  - 10.1016/j.crma.2013.06.013
LA  - en
ID  - CRMATH_2013__351_11-12_441_0
ER  - 
%0 Journal Article
%A Hiệp, Phạm Hoàng
%T A comparison principle for the log canonical threshold
%J Comptes Rendus. Mathématique
%D 2013
%P 441-443
%V 351
%N 11-12
%I Elsevier
%U http://www.numdam.org/articles/10.1016/j.crma.2013.06.013/
%R 10.1016/j.crma.2013.06.013
%G en
%F CRMATH_2013__351_11-12_441_0
Hiệp, Phạm Hoàng. A comparison principle for the log canonical threshold. Comptes Rendus. Mathématique, Volume 351 (2013) no. 11-12, pp. 441-443. doi : 10.1016/j.crma.2013.06.013. http://www.numdam.org/articles/10.1016/j.crma.2013.06.013/

[1] Cegrell, U. The general definition of the complex Monge–Ampère operator, Ann. Inst. Fourier (Grenoble), Volume 54 (2004), pp. 159-179

[2] de Fernex, T.; Ein, L.; Mustaţǎ, M. Bounds for log canonical thresholds with applications to birational rigidity, Math. Res. Lett., Volume 10 (2003), pp. 219-236

[3] Demailly, J.-P. Monge–Ampère operators, Lelong numbers and intersection theory (Ancona, V.; Silva, A., eds.), Complex Analysis and Geometry, Univ. Series in Math., Plenum Press, New York, 1993

[4] Demailly, J.-P.; Hoàng Hiệp, Phạm A sharp lower bound for the log canonical threshold, Acta Math. (2013) (in press) | arXiv

[5] Demailly, J.-P.; Kollár, J. Semi-continuity of complex singularity exponents and Kähler–Einstein metrics on Fano orbifolds, Ann. Sci. Éc. Norm. Super. (4), Volume 34 (2001), pp. 525-556

[6] Kiselman, C.O. Attenuating the singularities of plurisubharmonic functions, Ann. Pol. Math., Volume 60 (1994), pp. 173-197

[7] Kołodziej, S. The range of the complex Monge–Ampère operator, II, Indiana Univ. Math. J., Volume 44 (1995), pp. 765-782

[8] Skoda, H. Sous-ensembles analytiques dʼordre fini ou infini dans Cn, Bull. Soc. Math. Fr., Volume 100 (1972), pp. 353-408

Cited by Sources: