Numerical Analysis
FE heterogeneous multiscale method for long-time wave propagation
Comptes Rendus. Mathématique, Volume 351 (2013) no. 11-12, pp. 495-499.

A new finite element heterogeneous multiscale method (FE-HMM) is proposed for the numerical solution of the wave equation over long times in a rapidly varying medium. Our FE-HMM captures long-time dispersive effects of the true solution at a cost similar to that of a standard numerical homogenization scheme which, however, only captures the short-time macroscale behavior of the wave field.

Dans cet article, nous proposons une nouvelle méthode dʼéléments finis multi-échelles pour la solution de lʼéquation des ondes dans des milieux hétérogènes sur des temps longs. Cette méthode numérique est capable dʼapprocher le comportement effectif de la solution sur des temps longs, avec un coût identique à celui dʼune méthode dʼhomogénéisation numérique standard, qui ne peut capturer le comportement effectif de la solution que sur des temps courts.

Received:
Accepted:
Published online:
DOI: 10.1016/j.crma.2013.06.002
Abdulle, Assyr 1; Grote, Marcus J. 2; Stohrer, Christian 2

1 ANMC, Section de mathématiques, École Polytechnique Fédérale de Lausanne, CH-1015 Lausanne, Switzerland
2 Mathematisches Institut, Universität Basel, Rheinsprung 21, CH-4051 Basel, Switzerland
@article{CRMATH_2013__351_11-12_495_0,
     author = {Abdulle, Assyr and Grote, Marcus J. and Stohrer, Christian},
     title = {FE heterogeneous multiscale method for long-time wave propagation},
     journal = {Comptes Rendus. Math\'ematique},
     pages = {495--499},
     publisher = {Elsevier},
     volume = {351},
     number = {11-12},
     year = {2013},
     doi = {10.1016/j.crma.2013.06.002},
     language = {en},
     url = {http://www.numdam.org/articles/10.1016/j.crma.2013.06.002/}
}
TY  - JOUR
AU  - Abdulle, Assyr
AU  - Grote, Marcus J.
AU  - Stohrer, Christian
TI  - FE heterogeneous multiscale method for long-time wave propagation
JO  - Comptes Rendus. Mathématique
PY  - 2013
SP  - 495
EP  - 499
VL  - 351
IS  - 11-12
PB  - Elsevier
UR  - http://www.numdam.org/articles/10.1016/j.crma.2013.06.002/
DO  - 10.1016/j.crma.2013.06.002
LA  - en
ID  - CRMATH_2013__351_11-12_495_0
ER  - 
%0 Journal Article
%A Abdulle, Assyr
%A Grote, Marcus J.
%A Stohrer, Christian
%T FE heterogeneous multiscale method for long-time wave propagation
%J Comptes Rendus. Mathématique
%D 2013
%P 495-499
%V 351
%N 11-12
%I Elsevier
%U http://www.numdam.org/articles/10.1016/j.crma.2013.06.002/
%R 10.1016/j.crma.2013.06.002
%G en
%F CRMATH_2013__351_11-12_495_0
Abdulle, Assyr; Grote, Marcus J.; Stohrer, Christian. FE heterogeneous multiscale method for long-time wave propagation. Comptes Rendus. Mathématique, Volume 351 (2013) no. 11-12, pp. 495-499. doi : 10.1016/j.crma.2013.06.002. http://www.numdam.org/articles/10.1016/j.crma.2013.06.002/

[1] Abdulle, A. On a priori error analysis of fully discrete heterogeneous multiscale FEM, SIAM Multiscale Model. Simul., Volume 4 (2005) no. 2, pp. 447-459

[2] Abdulle, A. The finite element heterogeneous multiscale method: A computational strategy for multiscale PDEs, GAKUTO Int. Ser. Math. Sci. Appl., Volume 31 (2009), pp. 133-182

[3] Abdulle, A. A priori and a posteriori error analysis for numerical homogenization: A unified framework, Ser. Contemp. Appl. Math. CAM, Volume 16 (2011), pp. 280-305

[4] Abdulle, A.; Grote, M.J. Finite element heterogeneous multiscale method for the wave equation, Multiscale Model. Simul., Volume 9 (2011), pp. 766-792

[5] A. Abdulle, M.J. Grote, C. Stohrer, Finite element heterogeneous multiscale method for the wave equation: Long time effects, in preparation.

[6] Abdulle, A.; Weinan, E. Finite difference heterogeneous multi-scale method for homogenization problems, J. Comput. Phys., Volume 191 (2003) no. 1, pp. 18-39

[7] Abdulle, A.; Weinan, E.; Engquist, B.; Vanden-Eijnden, E. The heterogeneous multiscale method, Acta Numer., Volume 21 (2012), pp. 1-87

[8] Brahim-Otsmane, S.; Francfort, G.A.; Murat, F. Correctors for the homogenization of the wave and heat equations, J. Math. Pures Appl., Volume 71 (1992), pp. 197-231

[9] Chen, W.; Fish, J. A dispersive model for wave propagation in periodic heterogeneous media based on homogenization with multiple spatial and temporal scales, J. Appl. Mech., ASME, Volume 68 (2001), pp. 153-161

[10] T. Dohnal, A. Lamacz, B. Schweizer, Dispersive effective equations for waves in heterogeneous media on large time scales, Preprint 2013-01, TU-Dortmund.

[11] Engquist, B.; Holst, H.; Runborg, O. Multiscale methods for wave propagation in heterogeneous media over long time, Numerical Analysis of Multiscale Computations, Lect. Notes Comput. Sci. Eng., vol. 82, Springer, Berlin, 2011, pp. 167-186

[12] Holst, H. Algorithms and codes for wave propagation problems, KTH Royal Institute of Technology, School of Computer Science and Communication, 2011 (Technical Report)

[13] Lamacz, A. Dispersive effective models for waves in heterogeneous media, Math. Models Methods Appl. Sci., Volume 21 (2011), pp. 1871-1899

[14] Owhadi, H.; Zhang, L. Numerical homogenization of the acoustic wave equations with a continuum of scales, Comput. Methods Appl. Mech. Engrg., Volume 198 (2008), pp. 397-406

[15] Santosa, F.; Symes, W.W. A dispersive effective medium for wave propagation in periodic composites, SIAM J. Appl. Math., Volume 51 (1991), pp. 984-1005

[16] Vdovina, T.; Minkoff, S.; Korostyshevskaya, O. Operator upscaling for the acoustic wave equation, Multiscale Model. Simul., Volume 4 (2005), pp. 1305-1338

Cited by Sources: