Group Theory/Harmonic Analysis
Semisimple Lie groups satisfy property RD, a short proof
Comptes Rendus. Mathématique, Volume 351 (2013) no. 9-10, pp. 335-338.

We give a short elementary proof of the fact that connected semisimple real Lie groups satisfy property RD. The proof is based on a process of linearisation.

Nous donnons dans cette note une preuve courte et élémentaire du fait que les groupes de Lie semi-simples réels connexes satisfont la propriété RD. La preuve est basée sur un procédé de linéarisation.

Received:
Accepted:
Published online:
DOI: 10.1016/j.crma.2013.05.007
Boyer, Adrien 1

1 LATP, Centre de mathématiques et informatique (CMI), Aix–Marseille Université, Technopôle de Château-Gombert, 39, rue Frédéric-Joliot-Curie, 13453 Marseille cedex 13, France
@article{CRMATH_2013__351_9-10_335_0,
     author = {Boyer, Adrien},
     title = {Semisimple {Lie} groups satisfy property {RD,} a short proof},
     journal = {Comptes Rendus. Math\'ematique},
     pages = {335--338},
     publisher = {Elsevier},
     volume = {351},
     number = {9-10},
     year = {2013},
     doi = {10.1016/j.crma.2013.05.007},
     language = {en},
     url = {http://www.numdam.org/articles/10.1016/j.crma.2013.05.007/}
}
TY  - JOUR
AU  - Boyer, Adrien
TI  - Semisimple Lie groups satisfy property RD, a short proof
JO  - Comptes Rendus. Mathématique
PY  - 2013
SP  - 335
EP  - 338
VL  - 351
IS  - 9-10
PB  - Elsevier
UR  - http://www.numdam.org/articles/10.1016/j.crma.2013.05.007/
DO  - 10.1016/j.crma.2013.05.007
LA  - en
ID  - CRMATH_2013__351_9-10_335_0
ER  - 
%0 Journal Article
%A Boyer, Adrien
%T Semisimple Lie groups satisfy property RD, a short proof
%J Comptes Rendus. Mathématique
%D 2013
%P 335-338
%V 351
%N 9-10
%I Elsevier
%U http://www.numdam.org/articles/10.1016/j.crma.2013.05.007/
%R 10.1016/j.crma.2013.05.007
%G en
%F CRMATH_2013__351_9-10_335_0
Boyer, Adrien. Semisimple Lie groups satisfy property RD, a short proof. Comptes Rendus. Mathématique, Volume 351 (2013) no. 9-10, pp. 335-338. doi : 10.1016/j.crma.2013.05.007. http://www.numdam.org/articles/10.1016/j.crma.2013.05.007/

[1] Arthur, J. A local trace formula, Publ. Math. Inst. Hautes Études Sci., Volume 73 (1991), pp. 5-96

[2] Bekka, B.; de la Harpe, P.; Valette, A. Kazhdanʼs Property (T), New Math. Monogr., vol. 11, Cambridge University Press, Cambridge, 2008

[3] Boyer, A. Quasi-regular representations and property RD, 2013 (preprint) | arXiv

[4] Chatterji, I.; Pittet, C.; Saloff-Coste, L. Connected Lie groups and property RD, Duke Math. J., Volume 137 (2007) no. 3, pp. 511-536

[5] Gangolli, R.; Varadarajan, V.S. Harmonic Analysis of Spherical Functions on Real Reductive Groups, Springer-Verlag, New York, 1988

[6] Haagerup, U. An example of a nonnuclear C*-algebra which has the metric approximation property, Invent. Math., Volume 50 (1978/1979) no. 3, pp. 279-293

[7] Herz, C. Sur le phénomène de Kunze–Stein, C. R. Acad. Sci. Paris, Sér. A–B, Volume 271 (1970), p. A491-A493

[8] Jolissaint, P. Rapidly decreasing functions in reduced C*-algebras of groups, Trans. Amer. Math. Soc., Volume 317 (1990) no. 1, pp. 167-196

[9] Knapp, A.-W. Representation Theory of Semisimple Groups, Princeton Landmarks Math., 2001

[10] M. Perrone, Rapid decay and weak containment of unitary representations, 2009, unpublished notes.

[11] Shalom, Y. Rigidity, unitary representations of semisimple groups, and fundamental groups of manifolds with rank one transformation group, Ann. Math. (2), Volume 152 (2000) no. 1, pp. 113-182

[12] Valette, A. Introduction to the Baum–Connes Conjecture, Lectures Math. ETH Zürich, Birkhäuser Verlag, Basel, 2002

[13] Walspurger, J.-L. La formule de Plancherel pour les groupes p-adiques. Dʼaprès Harish-Chandra, J. Inst. Math. Jussieu, Volume 2 (April 2003) no. 2, pp. 235-333

Cited by Sources: