Partial Differential Equations
A remark on Lipschitz stability for inverse problems
Comptes Rendus. Mathématique, Volume 351 (2013) no. 5-6, pp. 187-190.

An abstract Lipschitz stability estimate is proved for a class of inverse problems. It is then applied to the inverse medium problem for the Helmholtz equation.

Une estimation abstraite de stabilité lipschitzienne est prouvée pour une certaine classe de problèmes inverses. Elle est ensuite appliquée à un problème inverse de reconstruction dʼindice de réfraction pour lʼéquation de Helmholtz.

Received:
Accepted:
Published online:
DOI: 10.1016/j.crma.2013.04.004
Bourgeois, Laurent 1

1 Laboratoire POEMS, ENSTA ParisTech, 828, boulevard des Maréchaux, 91762 Palaiseau cedex, France
@article{CRMATH_2013__351_5-6_187_0,
     author = {Bourgeois, Laurent},
     title = {A remark on {Lipschitz} stability for inverse problems},
     journal = {Comptes Rendus. Math\'ematique},
     pages = {187--190},
     publisher = {Elsevier},
     volume = {351},
     number = {5-6},
     year = {2013},
     doi = {10.1016/j.crma.2013.04.004},
     language = {en},
     url = {http://www.numdam.org/articles/10.1016/j.crma.2013.04.004/}
}
TY  - JOUR
AU  - Bourgeois, Laurent
TI  - A remark on Lipschitz stability for inverse problems
JO  - Comptes Rendus. Mathématique
PY  - 2013
SP  - 187
EP  - 190
VL  - 351
IS  - 5-6
PB  - Elsevier
UR  - http://www.numdam.org/articles/10.1016/j.crma.2013.04.004/
DO  - 10.1016/j.crma.2013.04.004
LA  - en
ID  - CRMATH_2013__351_5-6_187_0
ER  - 
%0 Journal Article
%A Bourgeois, Laurent
%T A remark on Lipschitz stability for inverse problems
%J Comptes Rendus. Mathématique
%D 2013
%P 187-190
%V 351
%N 5-6
%I Elsevier
%U http://www.numdam.org/articles/10.1016/j.crma.2013.04.004/
%R 10.1016/j.crma.2013.04.004
%G en
%F CRMATH_2013__351_5-6_187_0
Bourgeois, Laurent. A remark on Lipschitz stability for inverse problems. Comptes Rendus. Mathématique, Volume 351 (2013) no. 5-6, pp. 187-190. doi : 10.1016/j.crma.2013.04.004. http://www.numdam.org/articles/10.1016/j.crma.2013.04.004/

[1] Alessandrini, G. Stable determination of conductivity by boundary measurements, Appl. Anal., Volume 27 (1988) no. 1–3, pp. 153-172 (ISSN: 0003-6811) | DOI

[2] Alessandrini, G.; Vessella, S. Lipschitz stability for the inverse conductivity problem, Adv. Appl. Math., Volume 35 (2005) no. 2, pp. 207-241 http://www.sciencedirect.com/science/article/B6W9D-4G1GD1N-2/2/e81b5cf1da9ce12a6ef62ce492c16bc4 (ISSN: 0196-8858) | DOI

[3] Bourgeois, L. A remark on Lipschitz stability for inverse problems, 2012 (Tech. Rep. INRIA 8104)

[4] Colton, D.; Kress, R. Inverse Acoustic and Electromagnetic Scattering Theory, Appl. Math. Sci., vol. 93, Springer-Verlag, 1998

[5] Conca, C.; Cumsille, P.; Ortega, J.; Rosier, L. On the detection of a moving obstacle in an ideal fluid by a boundary measurement, Inverse Probl., Volume 24 (2008) no. 4, p. 045001 (ISSN: 0266-5611) | DOI

[6] Hähner, P. A periodic Faddeev-type solution operator, J. Differ. Equ., Volume 128 (1996) no. 1, pp. 300-308 (ISSN: 0022-0396) | DOI

[7] Hähner, P.; Hohage, T. New stability estimates for the inverse acoustic inhomogeneous medium problem and applications, SIAM J. Math. Anal., Volume 33 (2001) no. 3, pp. 670-685 (electronic) (ISSN: 0036-1410) | DOI

[8] Rondi, L. A remark on a paper by G. Alessandrini and S. Vessella: “Lipschitz stability for the inverse conductivity problem” [Adv. Appl. Math. 35 (2) (2005) 207–241, MR2152888], Adv. Appl. Math., Volume 36 (2006) no. 1, pp. 67-69 (ISSN: 0196-8858) | DOI

[9] Sincich, E. Lipschitz stability for the inverse Robin problem, Inverse Probl., Volume 23 (2007), pp. 1311-1326

[10] Stefanov, P. Stability of the inverse problem in potential scattering at fixed energy, Ann. Inst. Fourier (Grenoble), Volume 40 (1990) no. 4, pp. 867-884 (ISSN: 0373-0956)

[11] Uhlmann, G. Electrical impedance tomography and Calderonʼs problem, Inverse Probl., Volume 25 (2009) no. 12, p. 123011 http://stacks.iop.org/0266-5611/25/i=12/a=123011

Cited by Sources: