Algebraic Geometry
On the regularity of special difference divisors
Comptes Rendus. Mathématique, Volume 351 (2013) no. 3-4, pp. 107-109.

In this note we prove that the difference divisors associated with special cycles on unitary Rapoport–Zink spaces of signature (1,n1) in the unramified case are always regular.

Dans cette note, nous montrons que les diviseurs différence associés aux cycles spéciaux sur des espaces de Rapoport–Zink unitaires de signature (1,n1) dans le cas non ramifié sont toujours réguliers.

Received:
Accepted:
Published online:
DOI: 10.1016/j.crma.2013.02.001
Terstiege, Ulrich 1

1 Universität Duisburg-Essen, Institut für Experimentelle Mathematik, Ellernstrasse 29, 45326 Essen, Germany
@article{CRMATH_2013__351_3-4_107_0,
     author = {Terstiege, Ulrich},
     title = {On the regularity of special difference divisors},
     journal = {Comptes Rendus. Math\'ematique},
     pages = {107--109},
     publisher = {Elsevier},
     volume = {351},
     number = {3-4},
     year = {2013},
     doi = {10.1016/j.crma.2013.02.001},
     language = {en},
     url = {http://www.numdam.org/articles/10.1016/j.crma.2013.02.001/}
}
TY  - JOUR
AU  - Terstiege, Ulrich
TI  - On the regularity of special difference divisors
JO  - Comptes Rendus. Mathématique
PY  - 2013
SP  - 107
EP  - 109
VL  - 351
IS  - 3-4
PB  - Elsevier
UR  - http://www.numdam.org/articles/10.1016/j.crma.2013.02.001/
DO  - 10.1016/j.crma.2013.02.001
LA  - en
ID  - CRMATH_2013__351_3-4_107_0
ER  - 
%0 Journal Article
%A Terstiege, Ulrich
%T On the regularity of special difference divisors
%J Comptes Rendus. Mathématique
%D 2013
%P 107-109
%V 351
%N 3-4
%I Elsevier
%U http://www.numdam.org/articles/10.1016/j.crma.2013.02.001/
%R 10.1016/j.crma.2013.02.001
%G en
%F CRMATH_2013__351_3-4_107_0
Terstiege, Ulrich. On the regularity of special difference divisors. Comptes Rendus. Mathématique, Volume 351 (2013) no. 3-4, pp. 107-109. doi : 10.1016/j.crma.2013.02.001. http://www.numdam.org/articles/10.1016/j.crma.2013.02.001/

[1] Gross, B. On canonical and quasi-canonical liftings, Invent. Math., Volume 84 (1986), pp. 321-326

[2] Kudla, S.; Rapoport, M. Special cycles on unitary Shimura varieties, I. Unramified local theory, Invent. Math., Volume 184 (2011), pp. 629-682

[3] Kudla, S.; Rapoport, M. Special cycles on unitary Shimura varieties, II. Global theory | arXiv

[4] Rapoport, M.; Terstiege, U.; Zhang, W. On the Arithmetic Fundamental Lemma in the minuscule case | arXiv

[5] U. Terstiege, Intersections of special cycles on the Shimura variety for GU(1,2), J. Reine Angew. Math., , in press. | DOI

Cited by Sources: