Dans cet article, nous déterminons la constante optimale intervenant dans lʼestimée du théorème dʼextension
In this paper, we determine the optimal constant in the estimate of Ohsawaʼs generalized
Accepté le :
Publié le :
@article{CRMATH_2013__351_3-4_111_0, author = {Guan, Qi'an and Zhou, Xiangyu}, title = {Generalized $ {L}^{2}$ extension theorem and a conjecture of {Ohsawa}}, journal = {Comptes Rendus. Math\'ematique}, pages = {111--114}, publisher = {Elsevier}, volume = {351}, number = {3-4}, year = {2013}, doi = {10.1016/j.crma.2013.01.012}, language = {en}, url = {https://www.numdam.org/articles/10.1016/j.crma.2013.01.012/} }
TY - JOUR AU - Guan, Qiʼan AU - Zhou, Xiangyu TI - Generalized $ {L}^{2}$ extension theorem and a conjecture of Ohsawa JO - Comptes Rendus. Mathématique PY - 2013 SP - 111 EP - 114 VL - 351 IS - 3-4 PB - Elsevier UR - https://www.numdam.org/articles/10.1016/j.crma.2013.01.012/ DO - 10.1016/j.crma.2013.01.012 LA - en ID - CRMATH_2013__351_3-4_111_0 ER -
%0 Journal Article %A Guan, Qiʼan %A Zhou, Xiangyu %T Generalized $ {L}^{2}$ extension theorem and a conjecture of Ohsawa %J Comptes Rendus. Mathématique %D 2013 %P 111-114 %V 351 %N 3-4 %I Elsevier %U https://www.numdam.org/articles/10.1016/j.crma.2013.01.012/ %R 10.1016/j.crma.2013.01.012 %G en %F CRMATH_2013__351_3-4_111_0
Guan, Qiʼan; Zhou, Xiangyu. Generalized $ {L}^{2}$ extension theorem and a conjecture of Ohsawa. Comptes Rendus. Mathématique, Tome 351 (2013) no. 3-4, pp. 111-114. doi : 10.1016/j.crma.2013.01.012. https://www.numdam.org/articles/10.1016/j.crma.2013.01.012/
[1] The extension theorem of Ohsawa–Takegoshi and the theorem of Donnelly–Fefferman, Ann. Inst. Fourier (Grenoble), Volume 46 (1996) no. 4, pp. 1083-1094
[2] Z. Blocki, On the Ohsawa–Takegoshi extension theorem, preprint, 2012.
[3] Z. Blocki, Suita conjecture and the Ohsawa–Takegoshi extension theorem, Inventiones Mathematicae, , in press. | DOI
[4] A remark on an extension theorem of Ohsawa, Chin. Ann. Math., Ser. A, Volume 24 (2003), pp. 129-134 (in Chinese)
[5] Estimations
[6] Fonction de Green pluricomplexe et mesures pluriharmoniques, Séminaire de théorie spectrale et géométrie, vol. 4, Univ. Grenoble-1, Saint-Martin-dʼHères, 1986, pp. 131-143 (in French), année 1985–1986
[7] On the Ohsawa–Takegoshi–Manivel
[8] Complex analytic and differential geometry http://www-fourier.ujf-grenoble.fr/~demailly/books.html (electronically accessible at)
[9] Kähler manifolds and transcendental techniquesin algebraic geometry, International Congress of Mathematicians 2006, vol. I, Eur. Math. Soc., Zürich, 2007, pp. 153-186
[10] Analytic Methods in Algebraic Geometry, Higher Education Press, Beijing, 2010
[11] The Levi problem on complex spaces with singularities, Math. Ann., Volume 248 (1980) no. 1, pp. 47-72
[12] Optimal constant problem in the
[13] Q.A. Guan, X.Y. Zhou, Optimal constant in
[14] On the Ohsawa–Takegoshi
[15] Un théorème de prolongement
[16] Analytic inversion of adjunction:
[17] On the extension of
[18] On the extension of
[19] On the extension of
[20] Erratum to: “On the extension of
[21] On the extension of
[22] Capacity functions, Die Grundlehren der mathematischen Wissenschaften, vol. 149, Springer-Verlag Inc., New York, 1969
[23] The Fujita conjecture and the extension theorem of Ohsawa–Takegoshi, Geometric Complex Analysis, World Scientific, Hayama, 1996, pp. 577-592
[24] Extension of twisted pluricanonical sections with plurisubharmonic weight and invariance of semipositively twisted plurigenera for manifolds not necessarily of general type, Göttingen, 2000, Springer, Berlin (2002), pp. 223-277
[25] Capacities and kernels on Riemann surfaces, Arch. Ration. Mech. Anal., Volume 46 (1972), pp. 212-217
[26] On the Ohsawa–Takegoshi
Cité par Sources :
☆ The second author was partially supported by NSFC.