Partial Differential Equations/Optimal Control
A constructive method for the stabilization of the wave equation with localized Kelvin–Voigt damping
[Une méthode constructive pour la stabilisation de lʼéquation des ondes avec un amortissement localisé de type Kelvin–Voigt]
Comptes Rendus. Mathématique, Tome 350 (2012) no. 11-12, pp. 603-608.

On considère lʼéquation des ondes avec un amortissement de type Kelvin–Voigt dans un domaine borné. Lʼamortissement est localisé dans un sous-ensemble ouvert convenablement choisi dans le domaine en question. Le résultat de stabilité exponentielle proposé par Liu et Rao pour ce système suppose que lʼamortissement est localisé dans un voisinage de tout le bord, et le coefficient de lʼamortissement est continûment dérivable avec un laplacien borné. Nous proposons une solution nouvelle au problème de la stabilité exponentielle basée sur lʼintroduction dʼune nouvelle variable et une méthode constructive de type domaine des fréquences. Les caractéristiques principales de notre approche sont : (i) il nʼest pas nécessaire que la région où lʼamortissement est localisé soit un voisinage de tout le bord ; (ii) le coefficient dʼamortissement ainsi que son gradient sont supposés seulement bornés et mesurables ; (iii) lʼintroduction dʼune nouvelle variable. Ces éléments nous permettent dʼaméliorer la régularité du coefficient dʼamortissement, et plus particulièrement la région du contrôle dissipatif. De plus, si on combine la nouvelle méthode avec un résultat récent de Borichev et Tomilov sur la décroissance polynômiale de semi-groupes, cela nous permet de démontrer une estimation de décroissance polynômiale de lʼénergie lorsque le coefficient dʼamortissement est seulement borné et mesurable.

We consider the wave equation with Kelvin–Voigt damping in a bounded domain. The damping is localized in a suitable open subset of the domain under consideration. The exponential stability result proposed by Liu and Rao for that system assumes that the damping is localized in a neighborhood of the whole boundary, and the damping coefficient is continuously differentiable with a bounded Laplacian. We propose a new solution to the exponential stability problem based on the introduction of a new variable, and a constructive frequency domain approach. The main features of our method are: (i) the damping region need not be a neighborhood of the whole boundary; (ii) the damping coefficient is assumed to be bounded measurable with bounded measurable gradient only; (iii) the introduction of a new variable. These features enable us to improve on the damping coefficient smoothness and more especially on the feedback control region. Further, when combined with a recent result of Borichev and Tomilov on the polynomial decay of bounded semigroups, the new method enables us to prove a polynomial decay estimate of the energy when the damping coefficient is bounded measurable only.

Reçu le :
Accepté le :
Publié le :
DOI : 10.1016/j.crma.2012.06.005
Tebou, Louis 1

1 Department of Mathematics and Statistics, Florida International University, Miami, FL 33199, USA
@article{CRMATH_2012__350_11-12_603_0,
     author = {Tebou, Louis},
     title = {A constructive method for the stabilization of the wave equation with localized {Kelvin{\textendash}Voigt} damping},
     journal = {Comptes Rendus. Math\'ematique},
     pages = {603--608},
     publisher = {Elsevier},
     volume = {350},
     number = {11-12},
     year = {2012},
     doi = {10.1016/j.crma.2012.06.005},
     language = {en},
     url = {http://www.numdam.org/articles/10.1016/j.crma.2012.06.005/}
}
TY  - JOUR
AU  - Tebou, Louis
TI  - A constructive method for the stabilization of the wave equation with localized Kelvin–Voigt damping
JO  - Comptes Rendus. Mathématique
PY  - 2012
SP  - 603
EP  - 608
VL  - 350
IS  - 11-12
PB  - Elsevier
UR  - http://www.numdam.org/articles/10.1016/j.crma.2012.06.005/
DO  - 10.1016/j.crma.2012.06.005
LA  - en
ID  - CRMATH_2012__350_11-12_603_0
ER  - 
%0 Journal Article
%A Tebou, Louis
%T A constructive method for the stabilization of the wave equation with localized Kelvin–Voigt damping
%J Comptes Rendus. Mathématique
%D 2012
%P 603-608
%V 350
%N 11-12
%I Elsevier
%U http://www.numdam.org/articles/10.1016/j.crma.2012.06.005/
%R 10.1016/j.crma.2012.06.005
%G en
%F CRMATH_2012__350_11-12_603_0
Tebou, Louis. A constructive method for the stabilization of the wave equation with localized Kelvin–Voigt damping. Comptes Rendus. Mathématique, Tome 350 (2012) no. 11-12, pp. 603-608. doi : 10.1016/j.crma.2012.06.005. http://www.numdam.org/articles/10.1016/j.crma.2012.06.005/

[1] Bardos, C.; Lebeau, G.; Rauch, J. Sharp sufficient conditions for the observation, control and stabilization from the boundary, SIAM J. Control Optim., Volume 30 (1992), pp. 1024-1065

[2] Borichev, A.; Tomilov, Y. Optimal polynomial decay of functions and operator semigroups, Math. Ann., Volume 347 (2010), pp. 455-478

[3] Chen, G.; Fulling, S.A.; Narcowich, F.J.; Sun, S. Exponential decay of energy of evolution equations with locally distributed damping, SIAM J. Appl. Math., Volume 51 (1991), pp. 266-301

[4] Dafermos, C.M. Asymptotic behaviour of solutions of evolution equations (Crandall, M.G., ed.), Nonlinear Evolution Equations, Academic Press, New York, 1978, pp. 103-123

[5] Fu, X. Longtime behavior of the hyperbolic equations with an arbitrary internal damping, Z. Angew. Math. Phys., Volume 62 (2011), pp. 667-680

[6] Haraux, A. Une remarque sur la stabilisation de certains systèmes du deuxième ordre en temps, Port. Math., Volume 46 (1989), pp. 245-258

[7] Huang, F.L. Characteristic conditions for exponential stability of linear dynamical systems in Hilbert spaces, Ann. Differential Equations, Volume 1 (1985), pp. 43-56

[8] Komornik, V. Exact Controllability and Stabilization. The Multiplier Method, RAM, Masson & John Wiley, Paris, 1994

[9] Lasiecka, I.; Toundykov, D. Energy decay rates for the semilinear wave equation with nonlinear localized damping and source terms, Nonlinear Anal., Volume 64 (2006), pp. 1757-1797

[10] Lebeau, G. Equation des ondes amorties, Kaciveli, 1993 (Math. Phys. Stud.), Volume vol. 19, Kluwer Acad. Publ., Dordrecht (1996), pp. 73-109

[11] Lions, J.L. Contrôlabilité exacte, perturbations et stabilisation des systèmes distribués, vol. 2, RMA, Masson, Paris, 1988

[12] Liu, K. Locally distributed control and damping for the conservative systems, SIAM J. Control Optim., Volume 35 (1997), pp. 1574-1590

[13] Liu, K.; Liu, Z. Exponential decay of energy of the Euler–Bernoulli beam with locally distributed Kelvin–Voigt damping, SIAM J. Control Optim., Volume 36 (1998) no. 3, pp. 1086-1098

[14] Liu, K.; Rao, B. Stabilité exponentielle des équations des ondes avec amortissement local de Kelvin–Voigt, C. R. Acad. Sci. Paris, Ser. I, Volume 339 (2004), pp. 769-774

[15] Liu, K.; Rao, B. Exponential stability for the wave equations with local Kelvin–Voigt damping, Z. Angew. Math. Phys., Volume 57 (2006), pp. 419-432

[16] Nakao, M. Decay of solutions of the wave equation with a local nonlinear dissipation, Math. Ann., Volume 305 (1996), pp. 403-417

[17] Prüss, J. On the spectrum of C0-semigroups, Trans. Amer. Math. Soc., Volume 284 (1984), pp. 847-857

[18] Rauch, J.; Taylor, M. Exponential decay of solutions to hyperbolic equations in bounded domains, Indiana Univ. Math. J., Volume 24 (1974), pp. 79-86

[19] Tcheugoué Tébou, L.R. Stabilization of the wave equation with localized nonlinear damping, J. Differential Equations, Volume 145 (1998), pp. 502-524

[20] Tcheugoué Tébou, L.R. Well-posedness and energy decay estimates for the damped wave equation with Lr localizing coefficient, Comm. Partial Differential Equations, Volume 23 (1998), pp. 1839-1855

[21] Tebou, L. A Carleman estimates based method for the stabilization of some locally damped semilinear hyperbolic equations, ESAIM Control Optim. Calc. Var., Volume 14 (2008), pp. 561-574

[22] Zuazua, E. Exponential decay for the semilinear wave equation with locally distributed damping, Comm. Partial Differential Equations, Volume 15 (1990), pp. 205-235

Cité par Sources :