Numerical Analysis
A stochastic surrogate model approach applied to calibration of unstable fluid flow experiments
[Un modèle approché stochastique pour la calibration dʼexpériences dʼécoulements instables]
Comptes Rendus. Mathématique, Tome 350 (2012) no. 5-6, pp. 319-324.

Nous proposons une approche stochastique pour la calibration de tailles de zone de mélange dʼexpériences de tube à choc. La méthodologie repose sur la prise en compte de données initiales incertaines pour les équations dʼEuler. Dans ce travail, la position initiale de lʼinterface est considérée comme incertaine, modélisée par un processus stochastique. La taille de la zone de mélange est alors définie comme le support de la densité de probabilité du processus. Cette densité de probabilité, fonction du temps, est estimée par Chaos Polynomial généralisé non-intrusif, son support pouvant dans ce cas être évalué à moindre coût. Cette méthodologie repose sur un principe dʼergodicité (Wiener, 1938) et généralise lʼapproche par perturbations linéaires. Elle est appliquée dans ce papier à la calibration de résultats expérimentaux.

We propose a stochastic approach for calibration of mixing zone lengths in shock tube experiments. The methodology relies on taking into account uncertain initial data propagated through the basic multifluid Euler equations. In this work, the initial interface position is supposed uncertain, modeled by a stochastic process. The size of the mixing zone is then defined as the support of the probability density function of the stochastic process. This time dependent probability density function is estimated with non-intrusive generalized Polynomial Chaos, its support being in this case cheaply evaluated. This methodology relies on the application of an ergodic principle (Wiener, 1938) and generalizes linear perturbations analysis. It is applied in this Note to the calibration of several experimental results.

Reçu le :
Accepté le :
Publié le :
DOI : 10.1016/j.crma.2012.01.018
Poëtte, Gaël 1 ; Lucor, Didier 2 ; Jourdren, Hervé 1

1 CEA, DAM, DIF, 91297 Arpajon, France
2 Institut Jean-Le-Rond-dʼAlembert, université Pierre-et-Marie-Curie, 4, place Jussieu, 75252 Paris cedex 05, France
@article{CRMATH_2012__350_5-6_319_0,
     author = {Po\"ette, Ga\"el and Lucor, Didier and Jourdren, Herv\'e},
     title = {A stochastic surrogate model approach applied to calibration of unstable fluid flow experiments},
     journal = {Comptes Rendus. Math\'ematique},
     pages = {319--324},
     publisher = {Elsevier},
     volume = {350},
     number = {5-6},
     year = {2012},
     doi = {10.1016/j.crma.2012.01.018},
     language = {en},
     url = {http://www.numdam.org/articles/10.1016/j.crma.2012.01.018/}
}
TY  - JOUR
AU  - Poëtte, Gaël
AU  - Lucor, Didier
AU  - Jourdren, Hervé
TI  - A stochastic surrogate model approach applied to calibration of unstable fluid flow experiments
JO  - Comptes Rendus. Mathématique
PY  - 2012
SP  - 319
EP  - 324
VL  - 350
IS  - 5-6
PB  - Elsevier
UR  - http://www.numdam.org/articles/10.1016/j.crma.2012.01.018/
DO  - 10.1016/j.crma.2012.01.018
LA  - en
ID  - CRMATH_2012__350_5-6_319_0
ER  - 
%0 Journal Article
%A Poëtte, Gaël
%A Lucor, Didier
%A Jourdren, Hervé
%T A stochastic surrogate model approach applied to calibration of unstable fluid flow experiments
%J Comptes Rendus. Mathématique
%D 2012
%P 319-324
%V 350
%N 5-6
%I Elsevier
%U http://www.numdam.org/articles/10.1016/j.crma.2012.01.018/
%R 10.1016/j.crma.2012.01.018
%G en
%F CRMATH_2012__350_5-6_319_0
Poëtte, Gaël; Lucor, Didier; Jourdren, Hervé. A stochastic surrogate model approach applied to calibration of unstable fluid flow experiments. Comptes Rendus. Mathématique, Tome 350 (2012) no. 5-6, pp. 319-324. doi : 10.1016/j.crma.2012.01.018. http://www.numdam.org/articles/10.1016/j.crma.2012.01.018/

[1] Cameron, R.H.; Martin, W.T. The orthogonal development of non-linear functionals in series of Fourier–Hermite functionals, Ann. of Math., Volume 48 (1947), pp. 385-392

[2] Chassaing, J.-C.; Lucor, D. Stochastic investigation of flows about airfoils at transonic speeds, AIAA Journal, Volume 48 (2010) no. 5, pp. 938-950

[3] Chorin, A.J. Gaussian fields and random flow, J. Fluid. Mech., Volume 63 (1974), pp. 21-32

[4] Clarisse, J.-M.; Jaouen, S.; Raviart, P.-A. A Godunov type method in Lagrangian coordinates for computing linearly-perturbed planar-symmetric flows of gas dynamics, J. Comp. Phys., Volume 198 (2004), pp. 80-105

[5] Del Pino, S.; Jourdren, H. Arbitrary high-order schemes for the linear advection and wave equations: Application to hydrodynamics and aeroacoustics, C. R. Acad. Sci. Paris, Ser. I, Volume 342 (2006), pp. 441-446

[6] M. Gerritsma, P. Vos, J.-B. van der Steen, G. Karniadakis, Time dependent generalized polynomial chaos, preprint, 2009.

[7] Hahn, M.; Drikakis, D.; Youngs, D.L.; Williams, R.J.R. Richtmyer–Meshkov turbulent mixing arising from an inclined material interface with realistic surface perturbations and reshocked flow, Phys. of Fluids, Volume 23 (2011), p. 046101

[8] Holmes, R.L.; Dimonte, G.; Fryxell, B.; Gittings, M.L.; Grove, J.W.; Schneider, M.; Sharp, D.H.; Velikovich, A.L.; Weaver, R.P.; Zhang, Q. Richtmyer–Meshkov instability growth: Experiment, simulation and theory, J. Fluid Mech., Volume 389 (1999), pp. 55-79

[9] Lebrun, R.; Dutfoy, A. A generalization of the Nataf transformation to distributions with elliptical copula, Prob. Eng. Mech., Volume 24 (2009) no. 2, pp. 172-178

[10] Lucor, D.; Xiu, D.; Su, C.H.; Karniadakis, G.E. Predictability and uncertainty in CFD, Int. J. Numer. Methods Fluids, Volume 43 (2003), pp. 483-505

[11] Masse, L.; Jaouen, S.; Canaud, B. Hydrodynamic instabilities in ablative tamped flows, Phys. Plas., Volume 13 (2006), p. 122701

[12] Poëtte, G.; Després, B.; Lucor, D. Treatment of uncertain interfaces in compressible flows, Comp. Meth. Appl. Math. Engrg., Volume 200 (2011), pp. 284-308

[13] Poggi, F.; Thorembey, M.H.; Rodriguez, G. Velocity measurements in turbulent gaseous mixtures induced by Richtmyer–Meshkov instability, Phys. of Fluids, Volume 10 (1998), p. 11

[14] Serre, D. Systèmes Hyperboliques de Lois de Conservation, partie I, Diderot, Paris, 1996

[15] Simon, F.; Guillen, P.; Sagaut, P.; Lucor, D. A gPC based approach to uncertain transonic aerodynamics, CMAME, Volume 199 (2010), pp. 1091-1099

[16] Spanos, P.; Ghanem, R.G. Stochastic finite element expansion for random media, ASCE J. Eng. Mech., Volume 115 (1989) no. 5, pp. 1035-1053

[17] B. Sudret, Uncertainty propagation and sensitivity analysis in mechanical models, contribution to structural reliability and stochastic spectral methods, Habilitation à Diriger des Recherches, Université Blaise Pascal – Clermont II, 2007.

[18] Vetter, M.; Sturtevant, B. Experiments on the Richtmyer–Meshkov instability of an air/SF6 interface, Shock Waves, Volume 4 (1995), pp. 247-252

[19] Wan, X.; Karniadakis, G.E. Beyond Wiener–Askey expansions: Handling arbitrary PDFs, SIAM J. Sci. Comp., Volume 27 (2006) no. 1–3

[20] Wan, X.; Karniadakis, G.E. Long-term behavior of polynomial chaos in stochastic flow simulations, CMAME, Volume 195 (2006), pp. 5582-5596

[21] Wiener, N. The homogeneous chaos, Amer. J. Math., Volume 60 (1938), pp. 897-936

[22] Yu, Y.; Zhao, M.; Lee, T.; Pestiau, N.; Bo, W.; Glimm, J.; Grove, J.W. Uncertainty quantification for chaotic computational fluid dynamics, J. Comp. Phys., Volume 217 (2006) no. 1, pp. 200-216

Cité par Sources :