Differential Geometry
Classes of compact non-Kähler manifolds
Comptes Rendus. Mathématique, Volume 349 (2011) no. 19-20, pp. 1089-1092.

We study various classes of compact non-Kähler manifolds, many of which already exist in the literature, which are characterized by positive forms and currents. The goal of the note is to present an overview that highlights the links between the various classes and raises some interesting problems.

Nous étudions différentes classes de variétés compactes non Kähleriennes, dont beaucoup existent déjà dans la littérature, qui se caractérisent par des formes et des courants positifs. Le but de la note est de présenter une vue dʼensemble mettant en évidence les liens entre les différentes classes et pointant quelques problèmes intéressants.

Received:
Accepted:
Published online:
DOI: 10.1016/j.crma.2011.09.001
Alessandrini, Lucia 1

1 Dipartimento di Matematica, Università di Parma, Parco Area delle Scienze, 43124 Parma, Italy
@article{CRMATH_2011__349_19-20_1089_0,
     author = {Alessandrini, Lucia},
     title = {Classes of compact {non-K\"ahler} manifolds},
     journal = {Comptes Rendus. Math\'ematique},
     pages = {1089--1092},
     publisher = {Elsevier},
     volume = {349},
     number = {19-20},
     year = {2011},
     doi = {10.1016/j.crma.2011.09.001},
     language = {en},
     url = {http://www.numdam.org/articles/10.1016/j.crma.2011.09.001/}
}
TY  - JOUR
AU  - Alessandrini, Lucia
TI  - Classes of compact non-Kähler manifolds
JO  - Comptes Rendus. Mathématique
PY  - 2011
SP  - 1089
EP  - 1092
VL  - 349
IS  - 19-20
PB  - Elsevier
UR  - http://www.numdam.org/articles/10.1016/j.crma.2011.09.001/
DO  - 10.1016/j.crma.2011.09.001
LA  - en
ID  - CRMATH_2011__349_19-20_1089_0
ER  - 
%0 Journal Article
%A Alessandrini, Lucia
%T Classes of compact non-Kähler manifolds
%J Comptes Rendus. Mathématique
%D 2011
%P 1089-1092
%V 349
%N 19-20
%I Elsevier
%U http://www.numdam.org/articles/10.1016/j.crma.2011.09.001/
%R 10.1016/j.crma.2011.09.001
%G en
%F CRMATH_2011__349_19-20_1089_0
Alessandrini, Lucia. Classes of compact non-Kähler manifolds. Comptes Rendus. Mathématique, Volume 349 (2011) no. 19-20, pp. 1089-1092. doi : 10.1016/j.crma.2011.09.001. http://www.numdam.org/articles/10.1016/j.crma.2011.09.001/

[1] Alessandrini, L.; Andreatta, M. Closed transverse (p,p)-forms on compact complex manifolds, Compositio Math., Volume 61 (1987), pp. 181-200 (Erratum)

[2] Alessandrini, L.; Bassanelli, G. Small deformations of a class of compact non-Kähler manifolds, Proc. AMS, Volume 109 (1990), pp. 1059-1062

[3] Alessandrini, L.; Bassanelli, G. Compact p-Kähler manifolds, Geometriae Dedicata, Volume 38 (1991), pp. 199-210

[4] Deligne, P.; Griffiths, P.; Morgan, J.; Sullivan, D. Real homotopy theory of Kähler manifolds, Invent. Math., Volume 29 (1975), pp. 245-274

[5] Egidi, N. Special metrics on compact complex manifolds, Differential Geom. Appl., Volume 14 (2001), pp. 217-234

[6] Fu, J.; Yau, S.T. A note on small deformations of balanced manifolds | arXiv

[7] Gauduchon, P. Le théoreme de lʼexcentricité nulle, C. R. Acad. Sci. Paris, Ser. A, Volume 285 (1977), pp. 387-390

[8] Gromov, M. Pseudo holomorphic curves in symplectic manifolds, Invent. Math., Volume 82 (1985), pp. 307-347

[9] Harvey, R.; Knapp, A.W. Positive (p,p)-forms, Wirtingerʼs inequality and currents, Proc. Tulane Univ. 1972–1973, Marcel Dekker, New York, 1974, pp. 43-62

[10] Harvey, R.; Lawson, H.B. An intrinsic characterization of Kähler manifolds, Invent. Math., Volume 74 (1983), pp. 169-198

[11] Mc Duff, D.; Salamon, D. Introduction to Symplectic Topology, Oxford Math. Monograph, Oxford Sci. Publ., 1995

[12] Michelson, M.L. On the existence of special metrics in complex geometry, Acta Math., Volume 143 (1983), pp. 261-295

[13] Popovici, D. Limits of projective manifolds under holomorphic deformations | arXiv

[14] Popovici, D. Stability of strongly Gauduchon manifolds under modifications | arXiv

[15] Popovici, D. Deformation openness and closedness of various classes of compact complex manifolds: examples | arXiv

[16] Sullivan, D. Cycles for the dynamical study of foliated manifolds and complex manifolds, Invent. Math., Volume 36 (1976), pp. 225-255

[17] Varouchas, J. Propriétés cohomologiques dʼune classe de variétés analytiques complexes compactes, Séminaire dʼanalyse P. Lelong, P. Dolbeault, H. Skoda, années 1983–1984, Lecture Notes in Math., vol. 1198, Springer, Berlin, 1986, pp. 233-243

Cited by Sources: