Differential Geometry
Ricci flow of non-collapsed 3-manifolds: Two applications
[Flot de Ricci de variétés de dimension 3 non-effondrées : Deux applications]
Comptes Rendus. Mathématique, Tome 349 (2011) no. 9-10, pp. 567-569.

Dans cette Note, on donne deux applications simples de résultats dûs à Miles Simon sur le flot de Ricci des variétés de dimension 3 non-effondrées. On montre dʼabord un nouveau théorème de finitude à difféomorphisme près pour les variétés de dimension 3 à courbure de Ricci minorée, diamètre majoré et volume minoré. Ensuite, on donne une nouvelle preuve dʼun résultat dû à Cheeger et Colding. Si une suite de variétés compactes de dimension 3 à courbure de Ricci minorée converge au sens de Gromov–Hausdorff vers une une variété compacte de dimension 3, alors tout les éléments de la suite sont difféomorphes à la variété limite à partir dʼun certain rang.

In this short Note, we give two simple applications of results of Miles Simon about the Ricci flow of non-collapsed 3-manifolds. First, we prove a new diffeomorphism finiteness result for 3-manifolds with Ricci curvature bounded from below, volume bounded from below and diameter bounded from above. Second, we give an alternate proof of a theorem of Cheeger and Colding. Namely, we prove that if a sequence Mi of compact 3-manifolds with Ricci curvature bounded from below Gromov–Hausdorff converges to a compact 3-manifold M, then all the Miʼs are diffeomorphic to M for i large enough.

Reçu le :
Accepté le :
Publié le :
DOI : 10.1016/j.crma.2011.03.009
Richard, Thomas 1

1 Institut Fourier, 100, rue des Maths, 38402 St Martin dʼHères, France
@article{CRMATH_2011__349_9-10_567_0,
     author = {Richard, Thomas},
     title = {Ricci flow of non-collapsed 3-manifolds: {Two} applications},
     journal = {Comptes Rendus. Math\'ematique},
     pages = {567--569},
     publisher = {Elsevier},
     volume = {349},
     number = {9-10},
     year = {2011},
     doi = {10.1016/j.crma.2011.03.009},
     language = {en},
     url = {http://www.numdam.org/articles/10.1016/j.crma.2011.03.009/}
}
TY  - JOUR
AU  - Richard, Thomas
TI  - Ricci flow of non-collapsed 3-manifolds: Two applications
JO  - Comptes Rendus. Mathématique
PY  - 2011
SP  - 567
EP  - 569
VL  - 349
IS  - 9-10
PB  - Elsevier
UR  - http://www.numdam.org/articles/10.1016/j.crma.2011.03.009/
DO  - 10.1016/j.crma.2011.03.009
LA  - en
ID  - CRMATH_2011__349_9-10_567_0
ER  - 
%0 Journal Article
%A Richard, Thomas
%T Ricci flow of non-collapsed 3-manifolds: Two applications
%J Comptes Rendus. Mathématique
%D 2011
%P 567-569
%V 349
%N 9-10
%I Elsevier
%U http://www.numdam.org/articles/10.1016/j.crma.2011.03.009/
%R 10.1016/j.crma.2011.03.009
%G en
%F CRMATH_2011__349_9-10_567_0
Richard, Thomas. Ricci flow of non-collapsed 3-manifolds: Two applications. Comptes Rendus. Mathématique, Tome 349 (2011) no. 9-10, pp. 567-569. doi : 10.1016/j.crma.2011.03.009. http://www.numdam.org/articles/10.1016/j.crma.2011.03.009/

[1] Anderson, M.T.; Cheeger, J. Diffeomorphism finiteness for manifolds with Ricci curvature and Ln/2-norm of curvature bounded, Geom. Funct. Anal., Volume 1 (1991) no. 3, pp. 231-252

[2] Anderson, M.T.; Cheeger, J. Cα-compactness for manifolds with Ricci curvature and injectivity radius bounded below, J. Differential Geom., Volume 35 (1992) no. 2, pp. 265-281

[3] Berger, M. A Panoramic View of Riemannian Geometry, Springer-Verlag, Berlin, 2003

[4] Cheeger, J. Finiteness theorems for Riemannian manifolds, Amer. J. Math., Volume 92 (1970), pp. 61-74

[5] Cheeger, J.; Colding, T.H. On the structure of spaces with Ricci curvature bounded below. I, J. Differential Geom., Volume 46 (1997) no. 3, pp. 406-480

[6] Chow, B.; Lu, P.; Ni, L. Hamiltonʼs Ricci Flow, Graduate Studies in Mathematics, vol. 77, American Mathematical Society, Providence, RI, 2006

[7] Colding, T.H. Ricci curvature and volume convergence, Ann. of Math. (2), Volume 145 (1997) no. 3, pp. 477-501

[8] Hamilton, R.S. Three-manifolds with positive Ricci curvature, J. Differential Geom., Volume 17 (1982) no. 2, pp. 255-306

[9] Hamilton, R.S. A compactness property for solutions of the Ricci flow, Amer. J. Math., Volume 117 (1995) no. 3, pp. 545-572

[10] G. Perelman, The entropy formula for the Ricci flow and its geometric applications, ArXiv Mathematics e-prints, Nov. 2002.

[11] M. Simon, Ricci flow of non-collapsed 3-manifolds whose Ricci curvature is bounded from below, ArXiv e-prints, Mar. 2009.

[12] Weinstein, A. On the homotopy type of positively-pinched manifolds, Arch. Math. (Basel), Volume 18 (1967), pp. 523-524

Cité par Sources :