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In this short Note, we give two simple applications of results of Miles Simon about the
Ricci flow of non-collapsed 3-manifolds. First, we prove a new diffeomorphism finiteness
result for 3-manifolds with Ricci curvature bounded from below, volume bounded from
below and diameter bounded from above. Second, we give an alternate proof of a theorem
of Cheeger and Colding. Namely, we prove that if a sequence Mi of compact 3-manifolds
with Ricci curvature bounded from below Gromov–Hausdorff converges to a compact
3-manifold M , then all the Mi ’s are diffeomorphic to M for i large enough.

© 2011 Académie des sciences. Published by Elsevier Masson SAS. All rights reserved.

r é s u m é

Dans cette Note, on donne deux applications simples de résultats dûs à Miles Simon
sur le flot de Ricci des variétés de dimension 3 non-effondrées. On montre d’abord un
nouveau théorème de finitude à difféomorphisme près pour les variétés de dimension 3
à courbure de Ricci minorée, diamètre majoré et volume minoré. Ensuite, on donne une
nouvelle preuve d’un résultat dû à Cheeger et Colding. Si une suite de variétés compactes
de dimension 3 à courbure de Ricci minorée converge au sens de Gromov–Hausdorff
vers une une variété compacte de dimension 3, alors tout les éléments de la suite sont
difféomorphes à la variété limite à partir d’un certain rang.

© 2011 Académie des sciences. Published by Elsevier Masson SAS. All rights reserved.

In the recent years, Ricci flow has proved to be a valuable tool in the study of the geometry of Riemannian 3-manifolds.
Starting with Hamilton’s foundational work in 1983 [8], it has lead to Perelman’s proof of Thurston’s geometrization con-
jecture in 2003 (see [10] and subsequent papers).

In this short Note, we give two applications of the Ricci flow in dimension 3 using results from [11]. In the first section,
we give the main result from [11] that we will need in the proofs. In the second section, we briefly discuss previously
known finiteness theorems and give a proof of a new finiteness result in dimension 3 using Ricci flow. In the third section,
we use these tools to give an alternate proof of a theorem of Cheeger and Colding in dimension 3.

These results follow essentially from Proposition 9.3(ii) of [11], but more details are included here for the reader’s
convenience.
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1. Results from the Miles Simon’s paper [11]

For convenience of the reader, we recall here one of the main theorems of [11] that will be used in the sequel:

Theorem 1. (See [11], Theorem 1.9.) For any k > 0 and v0 > 0, there exist T > 0 and K > 0 such that, if (M, g0) is a complete
3-manifold with bounded curvature satisfying:

(i) Ricci(g0) � −k
(ii) ∀x ∈ M, volg0 (B(x,1)) � v0

then the solution (M, g(t)) to the Ricci flow with initial condition g0 exists at least on [0, T ) and satisfies, for all t in (0, T ):

(a) Ricci(g(t)) � −K
(b) supM ‖Rm(g(t))‖ � K

t
(c) ∀x ∈ M, volg(t)(B(x,1)) � v0

2
(d) if 0 � s < t < T , eK (t−s)dg(s) � dg(t) � dg(s) − K (

√
t − √

s)

In [11], this result has been used to prove that a Gromov–Hausdorff limit of 3-manifolds satisfying (i) and (ii) is itself a
smooth 3-manifold. The strength of this theorem is that the estimates depend on the geometry of (M, g0) in a very weak
way.

2. A finiteness theorem in dimension 3

The first finiteness theorems in Riemannian geometry were independently obtained by Weinstein [12] and Cheeger [4]
in the late 1960’s. Cheeger’s result was that given a two sided bound on the sectional curvatures, an upper bound on the
diameter and a lower bound on the volume, only finitely many diffeomorphism types of manifold admit a Riemannian
metric satisfying these bounds. There has been a great number of successful attempts to relax the assumptions of this
theorem, for an overview we refer to [3]. One way is to try to replace bounds on the sectional curvature by bounds on the
Ricci curvature.

Theorem 1 can be used to show:

Theorem 2. Given V > 0, D > 0 and k ∈ R there exists only finitely many closed 3-manifolds which admit Riemannian metrics such
that vol � V , diam � D and Ricci � k up to diffeomorphism.

Results in this direction have been obtained by Anderson and Cheeger [1,2] in the beginning of the 1990’s. These results
are true in any dimension but require stronger assumptions. In [1], in addition to the assumptions of Theorem 2 upper
bounds on the Ricci curvature and the Ld/2 norm of the curvature operator are required. Ref. [2] assumes lower bound on
injectivity radius instead of volume.

Proof. The proof goes by contradiction. Assume that we can find an infinite sequence (Mi, gi) of manifolds satisfying
Ricci(gi) � k, vol(Mi, gi) � V , diam(Mi, gi) � D and such that any two of the Mi ’s are not diffeomorphic. Choosing some
r > D , we have that for each i, the volume of B gi (x, r) is greater than V . This shows our sequence uniformly satisfies the
hypothesis of Theorem 1.

We now apply Theorem 1 to each manifold of the sequence and get a sequence of Ricci flows (Mi, gi(t))t∈[0,T ) satisfying
estimates (a), (b), (c) and (d).

The estimate (b) in the theorem gives a two sided curvature bound which is uniform on any compact interval of (0, T ).
Moreover, using a theorem of Cheeger, Gromov and Taylor (see [6], p. 199) and estimates (b) and (c), one gets, at time t0 =
T /2, a uniform lower bound on the injectivity radius. Thus, up to a subsequence, the sequence of Ricci flows (Mi, gi(t))t∈(0,T )

smoothly converges to a Ricci flow (M̃, g̃(t))t∈(0,T ) thanks to Hamilton’s compactness theorem [9].
Furthermore, using estimate (d), if we pick any t ∈ (0, T ), we have:

eKt diam(Mi, gi) � diam
(
Mi, gi(t)

)

In particular, for any i we get: diam(Mi, gi(t)) � eKt D . This implies, as (Mi, gi(t)) converges smoothly to (M̃, g̃(t)) up to a
subsequence, diam(M̃, g̃(t)) � eKt D . This shows that the limit manifold M̃ is compact and that, up to a subsequence, the
Mi ’s are all diffeomorphic to M̃ for i large enough. This is a contradiction. �
Remark 1. There is a shorter way for this proof: the estimates we get with Theorem 1 can be used to say that a manifold
satisfying the assumptions of Theorem 2 bears a metric satisfying the assumptions of Cheeger finiteness theorem (just by
flowing the metric for some fixed time t0 ∈ (0, T )). However, we will need the convergence of Ricci flows in the next section.
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3. A Ricci flow proof of a theorem of Cheeger and Colding

In [5], Cheeger and Colding proved the following theorem:

Theorem 3. Let (Mn
i , gi)i∈N be a sequence of compact n-dimensional Riemannian manifolds with Ricci curvature bounded from below

which converges to a compact Riemannian n-manifold (Mn, g) in the Gromov–Hausdorff sense.1 Then, for i large enough, all the
manifolds Mi are diffeomorphic to M.

In this section, we give a Ricci flow proof of this theorem in the case n = 3.

Proof. Let (M3
i , gi) be a sequence of 3-manifolds whose Ricci curvature is bounded from below and which GH-converges to

(M3, g) a smooth Riemannian 3-manifold. Since (Mi, gi)i∈N GH-converges to (M, g), diam(Mi, gi) tends to diam(M, g) as i
goes to infinity (by definition of GH-convergence) and vol(Mi, gi) tends to vol(M, g) (this is a theorem of Colding, see [7]).
Therefore, there exist positive constants D and V such that, for any i, vol(Mi, gi) > V and diam(Mi, gi) < D .

We argue by contradiction. If the theorem is false, we can find a subsequence of (Mi, gi) such that none of the Mi ’s is
diffeomorphic to M .

Then, as in the proof of Theorem 2, the Ricci flow (Mi, gi(t)) of each manifold of the sequence starting at gi exists
on (0, T ) and satisfies the estimates (a), (b), (c) and (d). We then have a subsequence of (Mi, gi(t))t∈(0,T ) which smoothly
converges to a Ricci flow (M̃, g̃(t))t∈(0,T ) satisfying the same estimates. Furthermore, M̃ is compact and the Mi ’s are diffeo-
morphic to M̃ when i is large enough.

All that remains to be done is to show that M̃ is diffeomorphic to M . This is done in the proof of Theorem 9.2 of [11]. In
a few words, one shows, using estimate (d), that the distances dg̃(t) uniformly converge as t goes to 0 to a distance l on M̃
which defines the same topology as the dg̃(t) ’s. Then, (M, g) is obtained as the limit of the (Mi, gi(t)) when first t goes to 0
and then i goes to infinity and (M̃, l) is obtained as the limit of the (Mi, gi(t)) when first i goes to infinity and then t goes
to 0. Using estimate (d) one can then show that (M̃, l) is isometric to (M, g) which finally gives that M is homeomorphic to
M̃ (see [11], proof of Theorem 8.2). Since in dimension 3 every manifold has a unique smooth structure, M̃ is diffeomorphic
to M . �
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