Algebraic Geometry
Note on local structure of Artin stacks
[Note sur la structure locale de champs de Artin]
Comptes Rendus. Mathématique, Tome 348 (2010) no. 19-20, pp. 1107-1109

In this Note we show that an Artin stack with finite inertia stack is étale locally isormorphic to the quotient of an affine scheme by an action of a general linear group.

Dans cette Note, nous montrons que tout champ algébrique dont l'inertie est finie, est étale-localement isomorphe au quotient d'un schéma affine par une action du groupe général linéaire.

Reçu le :
Accepté le :
Publié le :
DOI : 10.1016/j.crma.2010.09.022

Iwanari, Isamu 1

1 Research Institute for Mathematical Sciences, Kyoto University, Kyoto 606-8502, Japan
@article{CRMATH_2010__348_19-20_1107_0,
     author = {Iwanari, Isamu},
     title = {Note on local structure of {Artin} stacks},
     journal = {Comptes Rendus. Math\'ematique},
     pages = {1107--1109},
     year = {2010},
     publisher = {Elsevier},
     volume = {348},
     number = {19-20},
     doi = {10.1016/j.crma.2010.09.022},
     language = {en},
     url = {https://www.numdam.org/articles/10.1016/j.crma.2010.09.022/}
}
TY  - JOUR
AU  - Iwanari, Isamu
TI  - Note on local structure of Artin stacks
JO  - Comptes Rendus. Mathématique
PY  - 2010
SP  - 1107
EP  - 1109
VL  - 348
IS  - 19-20
PB  - Elsevier
UR  - https://www.numdam.org/articles/10.1016/j.crma.2010.09.022/
DO  - 10.1016/j.crma.2010.09.022
LA  - en
ID  - CRMATH_2010__348_19-20_1107_0
ER  - 
%0 Journal Article
%A Iwanari, Isamu
%T Note on local structure of Artin stacks
%J Comptes Rendus. Mathématique
%D 2010
%P 1107-1109
%V 348
%N 19-20
%I Elsevier
%U https://www.numdam.org/articles/10.1016/j.crma.2010.09.022/
%R 10.1016/j.crma.2010.09.022
%G en
%F CRMATH_2010__348_19-20_1107_0
Iwanari, Isamu. Note on local structure of Artin stacks. Comptes Rendus. Mathématique, Tome 348 (2010) no. 19-20, pp. 1107-1109. doi: 10.1016/j.crma.2010.09.022

[1] Abramovich, D.; Vistoli, A. Compactifying the space of stable maps, J. Amer. Math. Soc., Volume 15 (2005), pp. 27-75

[2] Abramovich, D.; Olsson, M.; Vistoli, A. Tame stacks in positive characteristic, Ann. Inst. Fourier (Grenoble), Volume 58 (2008), pp. 1057-1091

[3] B. Conrad, The Keel–Mori theorem via stacks, preprint.

[4] Edidin, D.; Hassett, B.; Kresch, A.; Vistoli, A. Brauer groups and quotient stacks, Amer. J. Math., Volume 123 (2001), pp. 761-777

[5] Iwanari, I. Stable points on algebraic stacks, Adv. Math., Volume 223 (2010), pp. 257-299

[6] Joshua, R. Riemann–Roch for algebraic stacks: I, Compositio Math., Volume 136 (2003), pp. 117-169

[7] Keel, S.; Mori, S. Quotients by groupoids, Ann. of Math., Volume 145 (1997), pp. 193-213

[8] Knutson, D. Algebraic Spaces, Lecture Notes in Math., vol. 203, Springer, 1971

[9] Laumon, G.; Moret-Bailly, L. Champs Algébriques, Springer-Verlag, 2000

[10] S. Mitchell, Hypercohomology spectra and Thomason's descent theorem, preprint.

[11] Olsson, M. Hom-stacks and restriction of scalars, Duke Math. J., Volume 134 (2006), pp. 139-164

[12] Thomason, R.W. Algebraic K-theory and étale cohomology, Ann. Sci. Ec. Norm. Sup., Volume 18 (1985), pp. 437-552

[13] Thomason, R.W. Algebraic K-theory of group scheme actions (Browder, W., ed.), Algebraic Topology and Algebraic K-theory, Ann. Math. Stud., vol. 113, Princeton University Press, Princeton, NJ, 1987, pp. 539-563

[14] Thomason, R.W. Equivariant resolution, linearization, and Hilbert's fourteenth problem over arbitrary base schemes, Adv. Math., Volume 65 (1987), pp. 16-34

[15] Thomason, R.W. Equivariant algebraic vs. topological K-homology Atiyah–Segal-style, Duke Math. J., Volume 56 (1988), pp. 589-636

Cité par Sources :