Optimal Control
Nonlinear stabilization of abstract systems via a linear observability inequality and application to vibrating PDE's
[Stabilisation non linéaire de systèmes abstraits via un critère d'observabilité linéaire et applications aux EDP vibrantes]
Comptes Rendus. Mathématique, Tome 348 (2010) no. 3-4, pp. 165-170.

On étudie dans cette Note, le problème de la stabilisation par rétro-action non linéaire localement distribuée ou frontière d'équations abstraites, comme conséquence d'une inégalité d'observabilité pour le problème linéaire associé sans rétro-action. On montre sous des hypothèses très générales sur le feedback, notamment sans hypothèse de croissance à l'origine, que si le système conservatif linéaire est observable par une observation localement distribuée (resp. par une observation frontière), dans l'espace d'énergie naturelle (resp. dans le domaine de l'opérateur), alors tout feedback non linéaire localement distribué (resp. frontière) stabilise le système et on donne un taux de décroissance de l'énergie quasi-optimal. On donne des exemples d'application de ces résultats à des EDP. On montre ainsi, pour le cas localement distribué, que l'on peut combiner les hypothèses géométriques optimales de Bardos et al. (1992) et la méthode de Alabau-Boussouira (2005) pour déduire des résultats de stabilisation non linéaire.

This Note is concerned with the links between nonlinear stabilization of hyperbolic systems and linear observability for the unforced corresponding linear system, for locally distributed and boundary feedbacks as well. We show that if the linear system is observable through a locally distributed (resp. boundary) observation, then any dissipative nonlinear feedback locally distributed (resp. active only on a part of the boundary) stabilize the system and we give a general energy decay formula. Our results generalize previous results by Haraux (1989) and Ammari and Tucsnak (2001) for linear feedbacks. We show by this way that for the locally distributed case, one can combine the optimal geometric conditions of Bardos et al. (1992) and the method of Alabau-Boussouira (2005) to deduce energy decay rates for nonlinear damped systems.

Reçu le :
Accepté le :
Publié le :
DOI : 10.1016/j.crma.2009.12.009
Alabau-Boussouira, Fatiha 1 ; Ammari, Kaïs 2

1 LMAM, CNRS-UMR 7122, Université de Metz, île du Saulcy, 57045 Metz cedex 01, France
2 Département de mathématiques, faculté des sciences de Monastir, 5019 Monastir, Tunisia
@article{CRMATH_2010__348_3-4_165_0,
     author = {Alabau-Boussouira, Fatiha and Ammari, Ka{\"\i}s},
     title = {Nonlinear stabilization of abstract systems via a linear observability inequality and application to vibrating {PDE's}},
     journal = {Comptes Rendus. Math\'ematique},
     pages = {165--170},
     publisher = {Elsevier},
     volume = {348},
     number = {3-4},
     year = {2010},
     doi = {10.1016/j.crma.2009.12.009},
     language = {en},
     url = {http://www.numdam.org/articles/10.1016/j.crma.2009.12.009/}
}
TY  - JOUR
AU  - Alabau-Boussouira, Fatiha
AU  - Ammari, Kaïs
TI  - Nonlinear stabilization of abstract systems via a linear observability inequality and application to vibrating PDE's
JO  - Comptes Rendus. Mathématique
PY  - 2010
SP  - 165
EP  - 170
VL  - 348
IS  - 3-4
PB  - Elsevier
UR  - http://www.numdam.org/articles/10.1016/j.crma.2009.12.009/
DO  - 10.1016/j.crma.2009.12.009
LA  - en
ID  - CRMATH_2010__348_3-4_165_0
ER  - 
%0 Journal Article
%A Alabau-Boussouira, Fatiha
%A Ammari, Kaïs
%T Nonlinear stabilization of abstract systems via a linear observability inequality and application to vibrating PDE's
%J Comptes Rendus. Mathématique
%D 2010
%P 165-170
%V 348
%N 3-4
%I Elsevier
%U http://www.numdam.org/articles/10.1016/j.crma.2009.12.009/
%R 10.1016/j.crma.2009.12.009
%G en
%F CRMATH_2010__348_3-4_165_0
Alabau-Boussouira, Fatiha; Ammari, Kaïs. Nonlinear stabilization of abstract systems via a linear observability inequality and application to vibrating PDE's. Comptes Rendus. Mathématique, Tome 348 (2010) no. 3-4, pp. 165-170. doi : 10.1016/j.crma.2009.12.009. http://www.numdam.org/articles/10.1016/j.crma.2009.12.009/

[1] Alabau-Boussouira, F. Une formule générale pour le taux de décroissance des systèmes dissipatifs non linéaires, C. R. Acad. Sci. Paris Sér. I Math., Volume 338 (2004), pp. 35-40

[2] Alabau-Boussouira, F. Convexity and weighted integral inequalities for energy decay rates of nonlinear dissipative hyperbolic systems, Appl. Math. Optim., Volume 51 (2005) no. 1, pp. 61-105

[3] F. Alabau-Boussouira, A unified approach via convexity for optimal energy decay rates of finite and infinite dimensional systems with applications to semi-discretized vibrating damped systems, J. Differential Equations, in press

[4] F. Alabau-Boussouira, K. Ammari, in preparation

[5] Ammari, K.; Tucsnak, M. Stabilization of second order evolution equations by a class of unbounded feedbacks, ESAIM COCV, Volume 6 (2001), pp. 361-386

[6] Ammari, K.; Tucsnak, M. Stabilization of Bernoulli–Euler beams by means of a pointwise feedback force, SIAM J. Control Optim., Volume 39 (2000), pp. 1160-1181

[7] Bardos, C.; Lebeau, G.; Rauch, J. Sharp sufficient conditions for the observation, control, and stabilization of waves from the boundary, SIAM J. Control Optim., Volume 30 (1992), pp. 1024-1065

[8] Burq, N. Contrôlabilité exacte des ondes dans des ouverts peu réguliers, Asymptot. Anal., Volume 14 (1997), pp. 157-191

[9] Burq, N.; Gérard, P. Condition nécessaire et suffisante pour la contrôlabilité exacte des ondes, C. R. Acad. Sci. Paris Sér. I Math., Volume 325 (1997), pp. 749-752

[10] Daoulatli, M.; Lasiecka, I.; Toundykov, D. Uniform energy decay for a wave equation with partially supported nonlinear boundary dissipation without growth conditions, Discrete Contin. Dyn. Syst. Ser. S, Volume 2 (2009), pp. 67-94

[11] Haraux, A. Une remarque sur la stabilisation de certains systèmes du deuxième ordre en temps, Port. Math., Volume 46 (1989), pp. 245-258

[12] Komornik, V. Exact Controllability and Stabilization. The Multiplier Method, Collection RMA, vol. 36, Masson–John Wiley, Paris–Chichester, 1994

[13] Lasiecka, I.; Tataru, D. Uniform boundary stabilization of semilinear wave equation with nonlinear boundary damping, Differential Integral Equations, Volume 8 (1993), pp. 507-533

[14] Lebeau, G. Equations des ondes amorties (Boutet de Monvel, A. et al., eds.), Algebraic and Geometric Methods in Mathematical Physics, Math. Phys. Stud., vol. 19, Kluwer Academic Publishers, Dordrecht, 1996, pp. 73-109

[15] Lions, J.-L. Contrôlabilité exacte et stabilisation de systèmes distribués, vol. 1, Masson, Paris, 1988

[16] Liu, K. Locally distributed control and damping for the conservative systems, SIAM J. Control Optim., Volume 35 (1997), pp. 1574-1590

[17] Zuazua, E. Exponential decay for the semilinear wave equation with locally distributed damping, Comm. Partial Differential Equations, Volume 15 (1990), pp. 205-235

[18] Zuazua, E. Uniform stabilization of the wave equation by nonlinear boundary feedback, SIAM J. Control Optim., Volume 28 (1990), pp. 466-477

Cité par Sources :