Mathematical Analysis
Flatness of distributions vanishing on infinitely many hyperplanes
Comptes Rendus. Mathématique, Volume 347 (2009) no. 23-24, pp. 1351-1354.

Let {Lk}k=1 be a family of hyperplanes in Rn and let L0 be a limiting hyperplane of {Lk}. Let u be a distribution that satisfies a natural wave front condition and has vanishing restrictions to Lk for all k1. Then u must be flat at L0.

Soit {Lk}k=1 une famille d'hyperplans dans Rn et soit L0 un hyperplan limite de {Lk}. Si u est une distribution satisfaisant à une condition naturelle portant sur le front d'onde et qui s'annule sur Lk pour tout k1, alors u est plate sur L0.

Received:
Accepted:
Published online:
DOI: 10.1016/j.crma.2009.10.028
Boman, Jan 1

1 Department of Mathematics, Stockholm University, SE 10691, Stockholm, Sweden
@article{CRMATH_2009__347_23-24_1351_0,
     author = {Boman, Jan},
     title = {Flatness of distributions vanishing on infinitely many hyperplanes},
     journal = {Comptes Rendus. Math\'ematique},
     pages = {1351--1354},
     publisher = {Elsevier},
     volume = {347},
     number = {23-24},
     year = {2009},
     doi = {10.1016/j.crma.2009.10.028},
     language = {en},
     url = {http://www.numdam.org/articles/10.1016/j.crma.2009.10.028/}
}
TY  - JOUR
AU  - Boman, Jan
TI  - Flatness of distributions vanishing on infinitely many hyperplanes
JO  - Comptes Rendus. Mathématique
PY  - 2009
SP  - 1351
EP  - 1354
VL  - 347
IS  - 23-24
PB  - Elsevier
UR  - http://www.numdam.org/articles/10.1016/j.crma.2009.10.028/
DO  - 10.1016/j.crma.2009.10.028
LA  - en
ID  - CRMATH_2009__347_23-24_1351_0
ER  - 
%0 Journal Article
%A Boman, Jan
%T Flatness of distributions vanishing on infinitely many hyperplanes
%J Comptes Rendus. Mathématique
%D 2009
%P 1351-1354
%V 347
%N 23-24
%I Elsevier
%U http://www.numdam.org/articles/10.1016/j.crma.2009.10.028/
%R 10.1016/j.crma.2009.10.028
%G en
%F CRMATH_2009__347_23-24_1351_0
Boman, Jan. Flatness of distributions vanishing on infinitely many hyperplanes. Comptes Rendus. Mathématique, Volume 347 (2009) no. 23-24, pp. 1351-1354. doi : 10.1016/j.crma.2009.10.028. http://www.numdam.org/articles/10.1016/j.crma.2009.10.028/

[1] Béslisle, C.; Massé, J.-C.; Ransford, T. When is a probability measure determined by infinitely many projections?, Ann. Probab., Volume 25 (1997), pp. 767-786

[2] Boman, J. A local vanishing theorem for distributions, C. R. Acad. Sci. Paris, Ser. I, Volume 315 (1992), pp. 1231-1234

[3] J. Boman, Unique continuation of microlocally analytic distributions and injectivity theorems for the ray transform, Inverse Probl. Imaging, in press

[4] Hörmander, L. The Analysis of Linear Partial Differential Operators, vol. 1, Springer-Verlag, Berlin, Heidelberg, New York, Tokyo, 1983

Cited by Sources: