Let be a family of hyperplanes in and let be a limiting hyperplane of . Let u be a distribution that satisfies a natural wave front condition and has vanishing restrictions to for all . Then u must be flat at .
Soit une famille d'hyperplans dans et soit un hyperplan limite de . Si u est une distribution satisfaisant à une condition naturelle portant sur le front d'onde et qui s'annule sur pour tout , alors u est plate sur .
Accepted:
Published online:
@article{CRMATH_2009__347_23-24_1351_0, author = {Boman, Jan}, title = {Flatness of distributions vanishing on infinitely many hyperplanes}, journal = {Comptes Rendus. Math\'ematique}, pages = {1351--1354}, publisher = {Elsevier}, volume = {347}, number = {23-24}, year = {2009}, doi = {10.1016/j.crma.2009.10.028}, language = {en}, url = {http://www.numdam.org/articles/10.1016/j.crma.2009.10.028/} }
TY - JOUR AU - Boman, Jan TI - Flatness of distributions vanishing on infinitely many hyperplanes JO - Comptes Rendus. Mathématique PY - 2009 SP - 1351 EP - 1354 VL - 347 IS - 23-24 PB - Elsevier UR - http://www.numdam.org/articles/10.1016/j.crma.2009.10.028/ DO - 10.1016/j.crma.2009.10.028 LA - en ID - CRMATH_2009__347_23-24_1351_0 ER -
%0 Journal Article %A Boman, Jan %T Flatness of distributions vanishing on infinitely many hyperplanes %J Comptes Rendus. Mathématique %D 2009 %P 1351-1354 %V 347 %N 23-24 %I Elsevier %U http://www.numdam.org/articles/10.1016/j.crma.2009.10.028/ %R 10.1016/j.crma.2009.10.028 %G en %F CRMATH_2009__347_23-24_1351_0
Boman, Jan. Flatness of distributions vanishing on infinitely many hyperplanes. Comptes Rendus. Mathématique, Volume 347 (2009) no. 23-24, pp. 1351-1354. doi : 10.1016/j.crma.2009.10.028. http://www.numdam.org/articles/10.1016/j.crma.2009.10.028/
[1] When is a probability measure determined by infinitely many projections?, Ann. Probab., Volume 25 (1997), pp. 767-786
[2] A local vanishing theorem for distributions, C. R. Acad. Sci. Paris, Ser. I, Volume 315 (1992), pp. 1231-1234
[3] J. Boman, Unique continuation of microlocally analytic distributions and injectivity theorems for the ray transform, Inverse Probl. Imaging, in press
[4] The Analysis of Linear Partial Differential Operators, vol. 1, Springer-Verlag, Berlin, Heidelberg, New York, Tokyo, 1983
Cited by Sources: