We compute the numbers of nilpotent groups of order n, of class at most 2 generated by at most 2 generators, by giving an explicit formula for the Dirichlet generating function .
On calcule les nombres de groupes nilpotents d'ordre n, de classe au plus 2, engendrés par au plus 2 générateurs, en donnant une formule explicite pour la fonction génératrice de Dirichlet .
Accepted:
Published online:
@article{CRMATH_2009__347_23-24_1347_0, author = {Voll, Christopher}, title = {Enumerating finite class-2-nilpotent groups on 2 generators}, journal = {Comptes Rendus. Math\'ematique}, pages = {1347--1350}, publisher = {Elsevier}, volume = {347}, number = {23-24}, year = {2009}, doi = {10.1016/j.crma.2009.10.024}, language = {en}, url = {http://www.numdam.org/articles/10.1016/j.crma.2009.10.024/} }
TY - JOUR AU - Voll, Christopher TI - Enumerating finite class-2-nilpotent groups on 2 generators JO - Comptes Rendus. Mathématique PY - 2009 SP - 1347 EP - 1350 VL - 347 IS - 23-24 PB - Elsevier UR - http://www.numdam.org/articles/10.1016/j.crma.2009.10.024/ DO - 10.1016/j.crma.2009.10.024 LA - en ID - CRMATH_2009__347_23-24_1347_0 ER -
%0 Journal Article %A Voll, Christopher %T Enumerating finite class-2-nilpotent groups on 2 generators %J Comptes Rendus. Mathématique %D 2009 %P 1347-1350 %V 347 %N 23-24 %I Elsevier %U http://www.numdam.org/articles/10.1016/j.crma.2009.10.024/ %R 10.1016/j.crma.2009.10.024 %G en %F CRMATH_2009__347_23-24_1347_0
Voll, Christopher. Enumerating finite class-2-nilpotent groups on 2 generators. Comptes Rendus. Mathématique, Volume 347 (2009) no. 23-24, pp. 1347-1350. doi : 10.1016/j.crma.2009.10.024. http://www.numdam.org/articles/10.1016/j.crma.2009.10.024/
[1] Counting p-groups and nilpotent groups, Publ. Math. I.H.E.S., Volume 92 (2000), pp. 63-112
[2] Subgroups of finite index in nilpotent groups, Invent. Math., Volume 93 (1988), pp. 185-223
[3] The p-group generation algorithm, J. Symbolic Comput., Volume 9 (1990) no. 5–6, pp. 677-698 (Computational group theory, Part 1)
[4] C. Voll, Zeta functions of groups and enumeration in Bruhat–Tits buildings, Ph.D. thesis, University of Cambridge, 2002
[5] Normal subgroup growth in free class-2-nilpotent groups, Math. Ann., Volume 332 (2005), pp. 67-79
Cited by Sources: