The aim of this Note is to give a simple proof of the following fact: the triangulated category of Tate motives over a field k is equivalent to the bounded derived category of its heart, provided that k is algebraic over (Theorem 1.3).
Le but de cette Note est de donner une preuve simple de l'énoncé suivant : sur un corps algébrique sur , la catégorie triangulée des motifs de Tate est équivalente à la catégorie dérivée bornée de son coeur (Théorème 1.3).
Accepted:
Published online:
@article{CRMATH_2009__347_23-24_1337_0, author = {Wildeshaus, J\"org}, title = {\protect\emph{f}-cat\'egories, tours et motifs de {Tate}}, journal = {Comptes Rendus. Math\'ematique}, pages = {1337--1342}, publisher = {Elsevier}, volume = {347}, number = {23-24}, year = {2009}, doi = {10.1016/j.crma.2009.10.016}, language = {fr}, url = {http://www.numdam.org/articles/10.1016/j.crma.2009.10.016/} }
TY - JOUR AU - Wildeshaus, Jörg TI - f-catégories, tours et motifs de Tate JO - Comptes Rendus. Mathématique PY - 2009 SP - 1337 EP - 1342 VL - 347 IS - 23-24 PB - Elsevier UR - http://www.numdam.org/articles/10.1016/j.crma.2009.10.016/ DO - 10.1016/j.crma.2009.10.016 LA - fr ID - CRMATH_2009__347_23-24_1337_0 ER -
Wildeshaus, Jörg. f-catégories, tours et motifs de Tate. Comptes Rendus. Mathématique, Volume 347 (2009) no. 23-24, pp. 1337-1342. doi : 10.1016/j.crma.2009.10.016. http://www.numdam.org/articles/10.1016/j.crma.2009.10.016/
[1] Une introduction aux motifs, Panoramas et Synthèses, vol. 17, Soc. Math. France, 2004
[2] Faisceaux pervers, Astérisque, Volume 100 (1982)
[3] On the derived category of perverse sheaves (Manin, Yu.I., ed.), K-Theory, Arithmetic and Geometry, Lect. Notes Math., vol. 1289, Springer-Verlag, 1987, pp. 27-41
[4] Algebraic cycles and algebraic K-theory, Adv. in Math., Volume 61 (1986), pp. 267-304
[5] The moving lemma for higher Chow groups, J. Algebraic Geom., Volume 3 (1994), pp. 537-568
[6] Satellites and exact functors, Ann. of Math., Volume 71 (1960), pp. 199-209
[7] Groupes fondamentaux motiviques de Tate mixte, Ann. Scient. ENS, Volume 38 (2005), pp. 1-56
[8] Sous les catégories dérivées, C. R. Acad. Sci., Volume 305 (1987), pp. 225-228
[9] Derived categories and universal problems, Comm. Algebra, Volume 19 (1991), pp. 699-747
[10] Tate motives and the vanishing conjectures for algebraic K-theory, Proceedings of the NATO Advanced Study Institute, held at Lake Louise, Alberta, December 12–16, 1991 (Goerss, P.G.; Jardine, J.F., eds.) (NATO Adv. Sci. Inst. Ser. C Math. Phys. Sci.), Volume vol. 407, Kluwer (1993), pp. 167-188
[11] Mixed motives (Friedlander, E.M.; Grayson, D.R., eds.), Handbook of K-Theory, Springer, 2005, pp. 429-521
[12] Triangulated categories of motives, Ann. of Math. Studies, vol. 143, Princeton Univ. Press, 2000 (in: V. Voevodsky, A. Suslin, E.M. Friedlander, Cycles, Transfers, and Motivic Homology Theories Chapter 5)
Cited by Sources: