Lie Algebras/Harmonic Analysis
Generalized Fourier transforms Fk,a
Comptes Rendus. Mathématique, Volume 347 (2009) no. 19-20, pp. 1119-1124.

We construct a two-parameter family of actions ωk,a of the Lie algebra sl(2,R) by differential-difference operators on RN. Here, k is a multiplicity-function for the Dunkl operators, and a>0 arises from the interpolation of the Weil representation and the minimal unitary representation of the conformal group. The action ωk,a lifts to a unitary representation of the universal covering of SL(2,R), and can even be extended to a holomorphic semigroup Ωk,a. Our semigroup generalizes the Hermite semigroup studied by R. Howe (k0, a=2) and the Laguerre semigroup by T. Kobayashi and G. Mano (k0, a=1). The boundary value of our semigroup Ωk,a provides us with (k,a)-generalized Fourier transforms Fk,a, which includes the Dunkl transform Dk (a=2) and a new unitary operator Hk (a=1) as a Dunkl-type generalization of the classical Hankel transform.

À l'aide des opérateurs différentiels et aux différences de Dunkl sur RN, on construit une famille d'actions ωk,a de l'algèbre de Lie sl(2,R) dépendant de deux paramètres k et a. Ici k est une fonction de multiplicité associée aux opérateurs de Dunkl, et a>0 un paramètre d'interpolation entre la représentation de Weil et la représentation minimale du groupe conforme. On montre que ωk,a s'intègre à une représentation unitaire du revêtement universel du groupe SL(2,R), et se prolonge à un semi-groupe holomorphe Ωk,a. Notre semi-groupe généralise le semi-groupe de Hermite, étudié par R. Howe (k0, a=2), ainsi que le semi-groupe de Laguerre dû à T. Kobayashi et G. Mano (k0, a=1). La valeur au bord de notre semi-groupe Ωk,a donne une transformation de Fourier (k,a)-généralisée Fk,a qui correspond à la transformation de Dunkl pour a=2, et à une nouvelle transformation Hk pour a=1 qui généralise la transformation de Hankel classique.

Received:
Accepted:
Published online:
DOI: 10.1016/j.crma.2009.07.015
Ben Saïd, Salem 1; Kobayashi, Toshiyuki 2; Ørsted, Bent 3

1 Université Henri-Poincaré-Nancy 1, Institut Elie-Cartan, B.P. 239, 54506 Vandoeuvre-Les-Nancy, France
2 The University of Tokyo, Graduate School of Mathematical Sciences, 3-8-1 Komaba, Meguro, Tokyo, 153-8914, Japan
3 University of Aarhus, Department of Mathematical Sciences, Ny Munkegade, DK 8000, Aarhus C, Denmark
@article{CRMATH_2009__347_19-20_1119_0,
     author = {Ben Sa{\"\i}d, Salem and Kobayashi, Toshiyuki and {\O}rsted, Bent},
     title = {Generalized {Fourier} transforms $ {\mathcal{F}}_{k,a}$},
     journal = {Comptes Rendus. Math\'ematique},
     pages = {1119--1124},
     publisher = {Elsevier},
     volume = {347},
     number = {19-20},
     year = {2009},
     doi = {10.1016/j.crma.2009.07.015},
     language = {en},
     url = {http://www.numdam.org/articles/10.1016/j.crma.2009.07.015/}
}
TY  - JOUR
AU  - Ben Saïd, Salem
AU  - Kobayashi, Toshiyuki
AU  - Ørsted, Bent
TI  - Generalized Fourier transforms $ {\mathcal{F}}_{k,a}$
JO  - Comptes Rendus. Mathématique
PY  - 2009
SP  - 1119
EP  - 1124
VL  - 347
IS  - 19-20
PB  - Elsevier
UR  - http://www.numdam.org/articles/10.1016/j.crma.2009.07.015/
DO  - 10.1016/j.crma.2009.07.015
LA  - en
ID  - CRMATH_2009__347_19-20_1119_0
ER  - 
%0 Journal Article
%A Ben Saïd, Salem
%A Kobayashi, Toshiyuki
%A Ørsted, Bent
%T Generalized Fourier transforms $ {\mathcal{F}}_{k,a}$
%J Comptes Rendus. Mathématique
%D 2009
%P 1119-1124
%V 347
%N 19-20
%I Elsevier
%U http://www.numdam.org/articles/10.1016/j.crma.2009.07.015/
%R 10.1016/j.crma.2009.07.015
%G en
%F CRMATH_2009__347_19-20_1119_0
Ben Saïd, Salem; Kobayashi, Toshiyuki; Ørsted, Bent. Generalized Fourier transforms $ {\mathcal{F}}_{k,a}$. Comptes Rendus. Mathématique, Volume 347 (2009) no. 19-20, pp. 1119-1124. doi : 10.1016/j.crma.2009.07.015. http://www.numdam.org/articles/10.1016/j.crma.2009.07.015/

[1] Dunkl, C.F. Reflection groups in analysis and applications, Japan J. Math., Volume 3 (2008), pp. 215-246

[2] Heckman, G.J. A remark on the Dunkl differential-difference operators (Barker, W.; Sally, P., eds.), Harmonic Analysis on Reductive Groups, Progr. Math., vol. 101, Birkhäuser, 1991, pp. 181-191

[3] Hilgert, J.; Neeb, K.-H. Positive definite spherical functions on Olshanski domains, Trans. Amer. Math. Soc., Volume 352 (2000), pp. 1345-1380

[4] Howe, R. The oscillator semigroup, Proc. Sympos. Pure Math., vol. 48, Amer. Math. Soc., 1988, pp. 61-132

[5] Kobayashi, T. Discrete decomposability of the restriction of Aq(λ) with respect to reductive subgroups, Invent. Math., Volume 117 (1994), pp. 181-205 (Part II Ann. Math., 147, 1998, pp. 709-729 Part III Invent. Math., 131, 1998, pp. 229-256)

[6] Kobayashi, T.; Mano, G. The inversion formula and holomorphic extension of the minimal representation of the conformal group, Harmonic Analysis, Group Representations, Automorphic Forms and Invariant Theory: In Honor of Roger Howe, World Scientific, 2007, pp. 159-223 (cf.) | arXiv

[7] Kostant, B. On Laguerre polynomials, Bessel functions, and Hankel transform and a series in the unitary dual of the simply-connected covering group of SL(2,R), Represent. Theory, Volume 4 (2000), pp. 181-224

[8] Rösler, M. An uncertainty principle for the Dunkl transform, Bull. Austral. Math. Soc., Volume 59 (1999), pp. 353-360

[9] Sato, M. Theory of hyperfunctions I, J. Fac. Sci. Univ. Tokyo, Volume 8 (1959), pp. 139-193

Cited by Sources: