Let Σ be a closed connected orientable surface of negative Euler characteristic and G a semisimple Lie group. For any Anosov representation we construct domains of discontinuity with compact quotient for the action of on flag varieties .
Soit le groupe fondamental d'une surface de Riemann connexe, fermée et de genre supérieur et soit G un groupe de Lie semi-simple. Pour toute représentation Anosov , nous construisons un ouvert de la variété drapeau sur lequel agit proprement avec quotient compact.
Accepted:
Published online:
@article{CRMATH_2009__347_17-18_1057_0, author = {Guichard, Olivier and Wienhard, Anna}, title = {Domains of discontinuity for surface groups}, journal = {Comptes Rendus. Math\'ematique}, pages = {1057--1060}, publisher = {Elsevier}, volume = {347}, number = {17-18}, year = {2009}, doi = {10.1016/j.crma.2009.06.013}, language = {en}, url = {http://www.numdam.org/articles/10.1016/j.crma.2009.06.013/} }
TY - JOUR AU - Guichard, Olivier AU - Wienhard, Anna TI - Domains of discontinuity for surface groups JO - Comptes Rendus. Mathématique PY - 2009 SP - 1057 EP - 1060 VL - 347 IS - 17-18 PB - Elsevier UR - http://www.numdam.org/articles/10.1016/j.crma.2009.06.013/ DO - 10.1016/j.crma.2009.06.013 LA - en ID - CRMATH_2009__347_17-18_1057_0 ER -
%0 Journal Article %A Guichard, Olivier %A Wienhard, Anna %T Domains of discontinuity for surface groups %J Comptes Rendus. Mathématique %D 2009 %P 1057-1060 %V 347 %N 17-18 %I Elsevier %U http://www.numdam.org/articles/10.1016/j.crma.2009.06.013/ %R 10.1016/j.crma.2009.06.013 %G en %F CRMATH_2009__347_17-18_1057_0
Guichard, Olivier; Wienhard, Anna. Domains of discontinuity for surface groups. Comptes Rendus. Mathématique, Volume 347 (2009) no. 17-18, pp. 1057-1060. doi : 10.1016/j.crma.2009.06.013. http://www.numdam.org/articles/10.1016/j.crma.2009.06.013/
[1] Three-dimensional Anosov flag manifolds, 2005 | arXiv
[2] Quasi-Fuchsian AdS representations are Anosov, 2007 | arXiv
[3] M. Burger, A. Iozzi, A. Wienhard, Maximal representations and Anosov structures, in preparation
[4] Maximal representations of surface groups: Symplectic Anosov structures, Pure and Applied Mathematics Quarterly. Special Issue: In Memory of Armand Borel, Volume 1 (2005) no. 2, pp. 555-601
[5] Moduli spaces of local systems and higher Teichmüller theory, Publ. Math. Inst. Hautes Études Sci., Volume 103 (2006), pp. 1-211
[6] Representation Theory, Graduate Texts in Mathematics, vol. 129, Springer-Verlag, New York, 1991
[7] Composantes de Hitchin et représentations hyperconvexes de groupes de surface, J. Differential Geom., Volume 80 (2008) no. 3, pp. 391-431
[8] Topological invariants of Anosov representations, 2009 | arXiv
[9] Lie groups and Teichmüller space, Topology, Volume 31 (1992) no. 3, pp. 449-473
[10] Anosov flows, surface groups and curves in projective space, Invent. Math., Volume 165 (2006) no. 1, pp. 51-114
[11] Anosov AdS representations are quasi-Fuchsian, 2007 | arXiv
Cited by Sources: