We prove that there are infinitely many inequivalent cubic binary forms F with content 1 for which the Thue equation has solutions in integers x and y for infinitely many integers m.
Nous démontrons qu'il existe une infinité de formes binaires cubiques F avec contenu 1 qui sont inéquivalentes et pour lesquelles l'équation de Thue a a des solutions entiers x et y pour une infinité d'entiers m.
Accepted:
Published online:
@article{CRMATH_2009__347_13-14_715_0, author = {Stewart, Cameron L.}, title = {Integer points on cubic {Thue} equations}, journal = {Comptes Rendus. Math\'ematique}, pages = {715--718}, publisher = {Elsevier}, volume = {347}, number = {13-14}, year = {2009}, doi = {10.1016/j.crma.2009.04.018}, language = {en}, url = {http://www.numdam.org/articles/10.1016/j.crma.2009.04.018/} }
TY - JOUR AU - Stewart, Cameron L. TI - Integer points on cubic Thue equations JO - Comptes Rendus. Mathématique PY - 2009 SP - 715 EP - 718 VL - 347 IS - 13-14 PB - Elsevier UR - http://www.numdam.org/articles/10.1016/j.crma.2009.04.018/ DO - 10.1016/j.crma.2009.04.018 LA - en ID - CRMATH_2009__347_13-14_715_0 ER -
Stewart, Cameron L. Integer points on cubic Thue equations. Comptes Rendus. Mathématique, Volume 347 (2009) no. 13-14, pp. 715-718. doi : 10.1016/j.crma.2009.04.018. http://www.numdam.org/articles/10.1016/j.crma.2009.04.018/
[1] Contributions to the analytic theory of numbers (II), J. Indian Math. Soc., Volume 20 (1933), pp. 121-128
[2] Binary cubic forms with many integral points, Surikaisekikenkyusho Kokyuroku, Volume 998 (1997), pp. 93-101
[3] Zur Approximation algebraischer Zahlen III (Über die mittlere Anzahl der Darstellungen grosser Zahlen durch binäre Formen), Acta Math., Volume 62 (1933), pp. 91-166
[4] On the lattice points on curves of genus 1, Proc. London Math. Soc., Volume 39 (1935) no. 2, pp. 431-466
[5] Diophantine Equations, Academic Press, London and New York, 1969
[6] Corps quadratiques de 3-rang 6 et courbes elliptiques de rang 12, C. R. Acad. Sci. Paris, Volume 305 (1987), pp. 215-218
[7] Integer points on curves of genus 1, J. London Math. Soc., Volume 28 (1983), pp. 1-7
[8] Cubic Thue equations with many solutions, Internat. Math. Res. Notices (2008) (2008:rnn040-11)
[9] Über Annäherungswerte algebraischer Zahlen, J. Reine Angew. Math., Volume 135 (1909), pp. 284-305
Cited by Sources:
☆ This research was supported in part by the Canada Research Chairs Program and by Grant A3528 from the Natural Sciences and Engineering Research Council of Canada.