In this Note, we give a uniform bound and a non-existence result for positive solutions to the Lichnerowicz equation in . In particular, we show that positive smooth solutions to:
Dans cette Note, nous donnons une estimation uniforme et un résultat de non-existence pour les solutions positives de l'équation de Lichnerowicz sur . En particulier, nous montrons que les solutions positives régulières de :
Accepted:
Published online:
@article{CRMATH_2009__347_13-14_805_0, author = {Ma, Li and Xu, Xingwang}, title = {Uniform bound and a non-existence result for {Lichnerowicz} equation in the whole \protect\emph{n}-space}, journal = {Comptes Rendus. Math\'ematique}, pages = {805--808}, publisher = {Elsevier}, volume = {347}, number = {13-14}, year = {2009}, doi = {10.1016/j.crma.2009.04.017}, language = {en}, url = {http://www.numdam.org/articles/10.1016/j.crma.2009.04.017/} }
TY - JOUR AU - Ma, Li AU - Xu, Xingwang TI - Uniform bound and a non-existence result for Lichnerowicz equation in the whole n-space JO - Comptes Rendus. Mathématique PY - 2009 SP - 805 EP - 808 VL - 347 IS - 13-14 PB - Elsevier UR - http://www.numdam.org/articles/10.1016/j.crma.2009.04.017/ DO - 10.1016/j.crma.2009.04.017 LA - en ID - CRMATH_2009__347_13-14_805_0 ER -
%0 Journal Article %A Ma, Li %A Xu, Xingwang %T Uniform bound and a non-existence result for Lichnerowicz equation in the whole n-space %J Comptes Rendus. Mathématique %D 2009 %P 805-808 %V 347 %N 13-14 %I Elsevier %U http://www.numdam.org/articles/10.1016/j.crma.2009.04.017/ %R 10.1016/j.crma.2009.04.017 %G en %F CRMATH_2009__347_13-14_805_0
Ma, Li; Xu, Xingwang. Uniform bound and a non-existence result for Lichnerowicz equation in the whole n-space. Comptes Rendus. Mathématique, Volume 347 (2009) no. 13-14, pp. 805-808. doi : 10.1016/j.crma.2009.04.017. http://www.numdam.org/articles/10.1016/j.crma.2009.04.017/
[1] Some Nonlinear Problems in Riemannian Geometry, Springer, New York, 1998
[2] The Einstein-scalar field constraints on asymptotically Euclidean manifolds, Chinese Ann. Math. Ser. B, Volume 27 (2006) no. 1, pp. 31-52
[3] The constraint equations for the Einstein-scalar field system on compact manifolds, Class. Quantum Grav., Volume 24 (2007), pp. 809-828
[4] O. Druet, E. Hebey, Stability and instability for Einstein-scalar field Lichnerowicz equations on a compact Riemannian manifolds, 2008, preprint
[5] Logistic type equations on by a squeezing method involving boundary blow-up solutions, J. London Math. Soc., Volume 64 (2001), pp. 107-124 (MR 2002d:35089)
[6] A variational analysis of Einstein-scalar field Lichnerowicz equations on compact Riemannian manifolds, Comm. Math. Phys., Volume 278 (2008) no. 1, pp. 117-132
[7] The Yamabe problem, Bull. Am. Soc., Volume 17 (1987) no. 1, pp. 37-91
[8] R. Schoen, A report on some recent progress on nonlinear problems in differential geometry, Surveys in Differential Geometry, 1991, pp. 201–241
Cited by Sources:
☆ The research is partially supported by the National Natural Science Foundation of China 10631020 and SRFDP 20060003002.