Differential Geometry/Mathematical Physics
Uniform bound and a non-existence result for Lichnerowicz equation in the whole n-space
Comptes Rendus. Mathématique, Volume 347 (2009) no. 13-14, pp. 805-808.

In this Note, we give a uniform bound and a non-existence result for positive solutions to the Lichnerowicz equation in Rn. In particular, we show that positive smooth solutions to:

Δu+f(u)=0,u>0,in Rn
where
f(u)=up1up1,
are uniformly bounded.

Dans cette Note, nous donnons une estimation uniforme et un résultat de non-existence pour les solutions positives de l'équation de Lichnerowicz sur Rn. En particulier, nous montrons que les solutions positives régulières de :

Δu+f(u)=0,u>0,dans Rn
f(u)=up1up1,
sont bornées.

Received:
Accepted:
Published online:
DOI: 10.1016/j.crma.2009.04.017
Ma, Li 1; Xu, Xingwang 2

1 Department of Mathematical Sciences, Tsinghua University, Beijing 100084, China
2 Mathematics Department, The National University of Singapore, 10, Kent Ridge Crescent, Singapore 119260
@article{CRMATH_2009__347_13-14_805_0,
     author = {Ma, Li and Xu, Xingwang},
     title = {Uniform bound and a non-existence result for {Lichnerowicz} equation in the whole \protect\emph{n}-space},
     journal = {Comptes Rendus. Math\'ematique},
     pages = {805--808},
     publisher = {Elsevier},
     volume = {347},
     number = {13-14},
     year = {2009},
     doi = {10.1016/j.crma.2009.04.017},
     language = {en},
     url = {http://www.numdam.org/articles/10.1016/j.crma.2009.04.017/}
}
TY  - JOUR
AU  - Ma, Li
AU  - Xu, Xingwang
TI  - Uniform bound and a non-existence result for Lichnerowicz equation in the whole n-space
JO  - Comptes Rendus. Mathématique
PY  - 2009
SP  - 805
EP  - 808
VL  - 347
IS  - 13-14
PB  - Elsevier
UR  - http://www.numdam.org/articles/10.1016/j.crma.2009.04.017/
DO  - 10.1016/j.crma.2009.04.017
LA  - en
ID  - CRMATH_2009__347_13-14_805_0
ER  - 
%0 Journal Article
%A Ma, Li
%A Xu, Xingwang
%T Uniform bound and a non-existence result for Lichnerowicz equation in the whole n-space
%J Comptes Rendus. Mathématique
%D 2009
%P 805-808
%V 347
%N 13-14
%I Elsevier
%U http://www.numdam.org/articles/10.1016/j.crma.2009.04.017/
%R 10.1016/j.crma.2009.04.017
%G en
%F CRMATH_2009__347_13-14_805_0
Ma, Li; Xu, Xingwang. Uniform bound and a non-existence result for Lichnerowicz equation in the whole n-space. Comptes Rendus. Mathématique, Volume 347 (2009) no. 13-14, pp. 805-808. doi : 10.1016/j.crma.2009.04.017. http://www.numdam.org/articles/10.1016/j.crma.2009.04.017/

[1] Aubin, Th. Some Nonlinear Problems in Riemannian Geometry, Springer, New York, 1998

[2] Choquet-Bruhat, Y.; Isenberg, J.; Pollack, D. The Einstein-scalar field constraints on asymptotically Euclidean manifolds, Chinese Ann. Math. Ser. B, Volume 27 (2006) no. 1, pp. 31-52

[3] Choquet-Bruhat, Y.; Isenberg, J.; Pollack, D. The constraint equations for the Einstein-scalar field system on compact manifolds, Class. Quantum Grav., Volume 24 (2007), pp. 809-828

[4] O. Druet, E. Hebey, Stability and instability for Einstein-scalar field Lichnerowicz equations on a compact Riemannian manifolds, 2008, preprint

[5] Du, Y.; Ma, L. Logistic type equations on RN by a squeezing method involving boundary blow-up solutions, J. London Math. Soc., Volume 64 (2001), pp. 107-124 (MR 2002d:35089)

[6] Hebey, E.; Pacard, F.; Pollack, D. A variational analysis of Einstein-scalar field Lichnerowicz equations on compact Riemannian manifolds, Comm. Math. Phys., Volume 278 (2008) no. 1, pp. 117-132

[7] Lee, J.; Parker, Th. The Yamabe problem, Bull. Am. Soc., Volume 17 (1987) no. 1, pp. 37-91

[8] R. Schoen, A report on some recent progress on nonlinear problems in differential geometry, Surveys in Differential Geometry, 1991, pp. 201–241

Cited by Sources:

The research is partially supported by the National Natural Science Foundation of China 10631020 and SRFDP 20060003002.