Analytic Geometry
On an analog of Pinkham's theorem for non-Tjurina components of rational singularities
Comptes Rendus. Mathématique, Volume 347 (2009) no. 11-12, pp. 643-646.

There is a correspondence between the set of functions in the maximal ideal of the local ring of a rational surface singularity ξ and the set E+(E) consisting of certain effective divisors supported on the exceptional fiber E of a resolution of the singularity. Given an element YE+(E) and a non-Tjurina component N of Y, we verify a formula for the least element of the set of divisors XE+(E) greater than or equal to Y+N stated but not proved in Tosun (1999).

Il existe une correspondance entre l'ensemble des fonctions de l'idéal maximal de l'anneau local en une singularité rationnelle ξ d'une surface et un ensemble E+(E) de diviseurs effectifs portés par la fibre exceptionnelle E d'une résolution de cette singularité. Étant donné un élément YE+(E) et une composante N de Y qui n'est pas Tjurina, nous établissons une formule donnant le plus petit élément de l'ensemble des diviseurs XE+(E) supérieur ou égal à Y+N, indiquée mais non démontrée dans Tosun (1999).

Received:
Accepted:
Published online:
DOI: 10.1016/j.crma.2009.04.010
Altınok, Selma 1

1 Adnan Menderes Üniversitesi, Matematik Bölümü, 09100 Aydın, Turkey
@article{CRMATH_2009__347_11-12_643_0,
     author = {Alt{\i}nok, Selma},
     title = {On an analog of {Pinkham's} theorem for {non-Tjurina} components of rational singularities},
     journal = {Comptes Rendus. Math\'ematique},
     pages = {643--646},
     publisher = {Elsevier},
     volume = {347},
     number = {11-12},
     year = {2009},
     doi = {10.1016/j.crma.2009.04.010},
     language = {en},
     url = {http://www.numdam.org/articles/10.1016/j.crma.2009.04.010/}
}
TY  - JOUR
AU  - Altınok, Selma
TI  - On an analog of Pinkham's theorem for non-Tjurina components of rational singularities
JO  - Comptes Rendus. Mathématique
PY  - 2009
SP  - 643
EP  - 646
VL  - 347
IS  - 11-12
PB  - Elsevier
UR  - http://www.numdam.org/articles/10.1016/j.crma.2009.04.010/
DO  - 10.1016/j.crma.2009.04.010
LA  - en
ID  - CRMATH_2009__347_11-12_643_0
ER  - 
%0 Journal Article
%A Altınok, Selma
%T On an analog of Pinkham's theorem for non-Tjurina components of rational singularities
%J Comptes Rendus. Mathématique
%D 2009
%P 643-646
%V 347
%N 11-12
%I Elsevier
%U http://www.numdam.org/articles/10.1016/j.crma.2009.04.010/
%R 10.1016/j.crma.2009.04.010
%G en
%F CRMATH_2009__347_11-12_643_0
Altınok, Selma. On an analog of Pinkham's theorem for non-Tjurina components of rational singularities. Comptes Rendus. Mathématique, Volume 347 (2009) no. 11-12, pp. 643-646. doi : 10.1016/j.crma.2009.04.010. http://www.numdam.org/articles/10.1016/j.crma.2009.04.010/

[1] Altınok, S.; Bhupal, M. Minimal page-genus of Milnor open books on links of rational surface singularities, Contemp. Math., Volume 475 (2008), pp. 1-9

[2] Artin, M. On isolated rational singularities of surfaces, Amer. J. Math., Volume 88 (1966), pp. 129-136

[3] Caubel, C.; Popescu-Pampu, P. On the contact boundaries of normal surface singularities, C. R. Math. Acad. Sci. Paris, Ser. I, Volume 339 (2004), pp. 43-48

[4] Laufer, H. On rational singularities, Amer. J. Math., Volume 94 (1972), pp. 597-608

[5] Lipman, J. Rational singularities, with applications to algebraic surfaces and unique factorization, Publ. Math. IHES, Volume 36 (1969), pp. 195-279

[6] Némethi, A.; Nicolaescu, L.I. Seiberg–Witten invariants and surface singularities, Geom. Topol., Volume 6 (2002), pp. 269-328

[7] Pinkham, H. Singularités rationnelles de surfaces, Séminaire sur les singularités des surfaces, Lecture Notes in Math., vol. 777, Springer-Verlag, 1980, pp. 147-178

[8] Tosun, M. Tyurina components and rational cycles for rational singularities, Turkish J. Math., Volume 23 (1999) no. 3, pp. 361-374

[9] Zariski, O. The theorem of Riemann–Roch for high multiples of an effective divisor on an algebraic surface, Ann. of Math., Volume 76 (1962), pp. 560-615

Cited by Sources: