Il existe une correspondance entre l'ensemble des fonctions de l'idéal maximal de l'anneau local en une singularité rationnelle ξ d'une surface et un ensemble
There is a correspondence between the set of functions in the maximal ideal of the local ring of a rational surface singularity ξ and the set
Accepté le :
Publié le :
@article{CRMATH_2009__347_11-12_643_0, author = {Alt{\i}nok, Selma}, title = {On an analog of {Pinkham's} theorem for {non-Tjurina} components of rational singularities}, journal = {Comptes Rendus. Math\'ematique}, pages = {643--646}, publisher = {Elsevier}, volume = {347}, number = {11-12}, year = {2009}, doi = {10.1016/j.crma.2009.04.010}, language = {en}, url = {https://www.numdam.org/articles/10.1016/j.crma.2009.04.010/} }
TY - JOUR AU - Altınok, Selma TI - On an analog of Pinkham's theorem for non-Tjurina components of rational singularities JO - Comptes Rendus. Mathématique PY - 2009 SP - 643 EP - 646 VL - 347 IS - 11-12 PB - Elsevier UR - https://www.numdam.org/articles/10.1016/j.crma.2009.04.010/ DO - 10.1016/j.crma.2009.04.010 LA - en ID - CRMATH_2009__347_11-12_643_0 ER -
%0 Journal Article %A Altınok, Selma %T On an analog of Pinkham's theorem for non-Tjurina components of rational singularities %J Comptes Rendus. Mathématique %D 2009 %P 643-646 %V 347 %N 11-12 %I Elsevier %U https://www.numdam.org/articles/10.1016/j.crma.2009.04.010/ %R 10.1016/j.crma.2009.04.010 %G en %F CRMATH_2009__347_11-12_643_0
Altınok, Selma. On an analog of Pinkham's theorem for non-Tjurina components of rational singularities. Comptes Rendus. Mathématique, Tome 347 (2009) no. 11-12, pp. 643-646. doi : 10.1016/j.crma.2009.04.010. https://www.numdam.org/articles/10.1016/j.crma.2009.04.010/
[1] Minimal page-genus of Milnor open books on links of rational surface singularities, Contemp. Math., Volume 475 (2008), pp. 1-9
[2] On isolated rational singularities of surfaces, Amer. J. Math., Volume 88 (1966), pp. 129-136
[3] On the contact boundaries of normal surface singularities, C. R. Math. Acad. Sci. Paris, Ser. I, Volume 339 (2004), pp. 43-48
[4] On rational singularities, Amer. J. Math., Volume 94 (1972), pp. 597-608
[5] Rational singularities, with applications to algebraic surfaces and unique factorization, Publ. Math. IHES, Volume 36 (1969), pp. 195-279
[6] Seiberg–Witten invariants and surface singularities, Geom. Topol., Volume 6 (2002), pp. 269-328
[7] Singularités rationnelles de surfaces, Séminaire sur les singularités des surfaces, Lecture Notes in Math., vol. 777, Springer-Verlag, 1980, pp. 147-178
[8] Tyurina components and rational cycles for rational singularities, Turkish J. Math., Volume 23 (1999) no. 3, pp. 361-374
[9] The theorem of Riemann–Roch for high multiples of an effective divisor on an algebraic surface, Ann. of Math., Volume 76 (1962), pp. 560-615
Cité par Sources :