Differential Geometry
Minimizers of Kirchhoff's plate functional: Euler–Lagrange equations and regularity
Comptes Rendus. Mathématique, Volume 347 (2009) no. 11-12, pp. 647-650.

Let SR2 be a bounded C-domain. In this Note we consider W2,2 isometric immersions u:SR3 which minimize Kirchhoff's plate functional under boundary conditions prescribing the values of u and of ∇u on parts of ∂S. We derive the Euler–Lagrange equations satisfied by u and we derive regularity results for u.

Soit SR2 un C-domaine borné. Dans cette Note on considère une immersion W2,2-isométrique u:SR3 qui minimise la fonctionnelle de Kirchhoff sous les conditions frontières imposant les valeurs de u et ∇u sur des partie de ∂S. On en déduit les équations de Euler–Lagrange satisfaites par u et un résultat de régularité pour u.

Received:
Accepted:
Published online:
DOI: 10.1016/j.crma.2009.03.031
Hornung, Peter 1

1 Institut für Angewandte Mathematik, Universität Bonn, Endenicher Allee 60, 53115 Bonn, Germany
@article{CRMATH_2009__347_11-12_647_0,
     author = {Hornung, Peter},
     title = {Minimizers of {Kirchhoff's} plate functional: {Euler{\textendash}Lagrange} equations and regularity},
     journal = {Comptes Rendus. Math\'ematique},
     pages = {647--650},
     publisher = {Elsevier},
     volume = {347},
     number = {11-12},
     year = {2009},
     doi = {10.1016/j.crma.2009.03.031},
     language = {en},
     url = {http://www.numdam.org/articles/10.1016/j.crma.2009.03.031/}
}
TY  - JOUR
AU  - Hornung, Peter
TI  - Minimizers of Kirchhoff's plate functional: Euler–Lagrange equations and regularity
JO  - Comptes Rendus. Mathématique
PY  - 2009
SP  - 647
EP  - 650
VL  - 347
IS  - 11-12
PB  - Elsevier
UR  - http://www.numdam.org/articles/10.1016/j.crma.2009.03.031/
DO  - 10.1016/j.crma.2009.03.031
LA  - en
ID  - CRMATH_2009__347_11-12_647_0
ER  - 
%0 Journal Article
%A Hornung, Peter
%T Minimizers of Kirchhoff's plate functional: Euler–Lagrange equations and regularity
%J Comptes Rendus. Mathématique
%D 2009
%P 647-650
%V 347
%N 11-12
%I Elsevier
%U http://www.numdam.org/articles/10.1016/j.crma.2009.03.031/
%R 10.1016/j.crma.2009.03.031
%G en
%F CRMATH_2009__347_11-12_647_0
Hornung, Peter. Minimizers of Kirchhoff's plate functional: Euler–Lagrange equations and regularity. Comptes Rendus. Mathématique, Volume 347 (2009) no. 11-12, pp. 647-650. doi : 10.1016/j.crma.2009.03.031. http://www.numdam.org/articles/10.1016/j.crma.2009.03.031/

[1] Bohle, C.; Peters, G.P.; Pinkall, U. Constrained Willmore surfaces, Calc. Var., Volume 32 (2008), pp. 263-277

[2] Friesecke, G.; James, R.; Müller, S. A theorem on geometric rigidity and the derivation of nonlinear plate theory from three-dimensional elasticity, Comm. Pure Appl. Math., Volume 55 (2002), pp. 1461-1506

[3] P. Hornung, A density result for W2,2 isometric immersions, MIS MPG Preprint, 2007

[4] Hornung, P. Approximating W2,2 isometric immersions, C. R. Acad. Sci. Paris, Ser. I, Volume 346 (2008), pp. 189-192

[5] P. Hornung, Flat minimizers of the Willmore functional: Euler–Lagrange equations, Preprint, Universität Bonn, 2008

[6] P. Hornung, Regularity results for flat minimizers of the Willmore functional, Preprint, Universität Bonn, 2008

[7] B. Kirchheim, Geometry and Rigidity of Microstructures, Habilitation thesis, University of Leipzig, 2001

[8] Müller, S.; Pakzad, M.R. Regularity properties of isometric immersions, Math. Z., Volume 251 (2005), pp. 313-331

[9] Pakzad, M.R. On the Sobolev space of isometric immersions, J. Differential Geom., Volume 66 (2004) no. 1, pp. 47-69

[10] Starostin, E.L.; van der Heijden, G.H.M. The shape of a Möbius strip, Nature Materials, Volume 6 (2007), pp. 563-567

Cited by Sources: