Mathematical Analysis/Harmonic Analysis
Quasi-frames of translates
Comptes Rendus. Mathématique, Volume 347 (2009) no. 13-14, pp. 739-742.

We construct uniformly discrete, and even sparse, sequences of translates {g(tλ)} of a single function which have the following frame-type approximation property: for every q>2 there exists C(q) such that every function fL2(R) can be approximated with arbitrary small L2-error by a linear combination cλg(tλ) satisfying the lq-estimate of the coefficients:

{cλ}lqC(q)f.
This cannot be done for q=2, according to a result of Christensen, Deng and Heil.

Nous construisons une suite réelle Λ uniformément discrète (de pas >0) et même lacunaire, et une fonction gL2(R), telles que le système des translatées {g(tλ)}(λΛ) soit un “quasi-frame” au sens suivant : pour tout q>2 il existe C(q)>0 tel que toute fonction fL2(R) est approchable dans L2(R) par des combinaisons linéaires cλg(tλ) vérifiant (|cλ|q)1/qC(q)f. Cela est impossible quand q=2, selon un résultat de Christensen, Deng et Heil.

Received:
Accepted:
Published online:
DOI: 10.1016/j.crma.2009.04.001
Nitzan, Shahaf 1; Olevskii, Alexander 1

1 School of Mathematical Sciences, Tel Aviv University, Ramat-Aviv, Israel 69978
@article{CRMATH_2009__347_13-14_739_0,
     author = {Nitzan, Shahaf and Olevskii, Alexander},
     title = {Quasi-frames of translates},
     journal = {Comptes Rendus. Math\'ematique},
     pages = {739--742},
     publisher = {Elsevier},
     volume = {347},
     number = {13-14},
     year = {2009},
     doi = {10.1016/j.crma.2009.04.001},
     language = {en},
     url = {http://www.numdam.org/articles/10.1016/j.crma.2009.04.001/}
}
TY  - JOUR
AU  - Nitzan, Shahaf
AU  - Olevskii, Alexander
TI  - Quasi-frames of translates
JO  - Comptes Rendus. Mathématique
PY  - 2009
SP  - 739
EP  - 742
VL  - 347
IS  - 13-14
PB  - Elsevier
UR  - http://www.numdam.org/articles/10.1016/j.crma.2009.04.001/
DO  - 10.1016/j.crma.2009.04.001
LA  - en
ID  - CRMATH_2009__347_13-14_739_0
ER  - 
%0 Journal Article
%A Nitzan, Shahaf
%A Olevskii, Alexander
%T Quasi-frames of translates
%J Comptes Rendus. Mathématique
%D 2009
%P 739-742
%V 347
%N 13-14
%I Elsevier
%U http://www.numdam.org/articles/10.1016/j.crma.2009.04.001/
%R 10.1016/j.crma.2009.04.001
%G en
%F CRMATH_2009__347_13-14_739_0
Nitzan, Shahaf; Olevskii, Alexander. Quasi-frames of translates. Comptes Rendus. Mathématique, Volume 347 (2009) no. 13-14, pp. 739-742. doi : 10.1016/j.crma.2009.04.001. http://www.numdam.org/articles/10.1016/j.crma.2009.04.001/

[1] Christensen, O.; Deng, B.; Heil, C. Density of Gabor frames, Appl. Comput. Harmon. Anal., Volume 7 (1999), pp. 292-304

[2] Katznelson, Y. An Introduction to Harmonic Analysis, Dover Publications, Inc., New York, 1976

[3] Kozma, G.; Olevskii, A. Menshov representation spectra, J. Anal. Math., Volume 84 (2001), pp. 361-393

[4] Landau, H.J. A sparse sequence of exponentials closed on large sets, Bull. Am. Math. Soc., Volume 70 (1964), pp. 566-569

[5] Nitzan-Hahamov, S.; Olevskii, A. Sparse exponential systems: completeness with estimates, Israel J. Math., Volume 158 (2007), pp. 205-215

[6] Olevskii, A. Completeness in L2(R) of almost integer translates, C. R. Acad. Sci. Paris, Ser. I, Volume 324 (1997), pp. 987-991

[7] Olevskii, A. Approximation by translates in L2(R), Real Anal. Exchange, Volume 24 (1998/1999) no. 1, pp. 43-44

[8] Olevskii, A.; Ulanovskii, A. Almost integer translates, Do nice generators exist?, J. Fourier Anal. Appl., Volume 10 (2004) no. 1, pp. 93-104

[9] Ramanathan, J.; Steger, T. Incompleteness of sparse coherent states, Appl. Comput. Harmon. Anal., Volume 2 (1995), pp. 148-153

Cited by Sources:

Supported in part by the Israel Science Foundation.