We construct uniformly discrete, and even sparse, sequences of translates of a single function which have the following frame-type approximation property: for every there exists such that every function can be approximated with arbitrary small -error by a linear combination satisfying the -estimate of the coefficients:
Nous construisons une suite réelle Λ uniformément discrète (de pas >0) et même lacunaire, et une fonction , telles que le système des translatées soit un “quasi-frame” au sens suivant : pour tout il existe tel que toute fonction est approchable dans par des combinaisons linéaires vérifiant . Cela est impossible quand , selon un résultat de Christensen, Deng et Heil.
Accepted:
Published online:
@article{CRMATH_2009__347_13-14_739_0, author = {Nitzan, Shahaf and Olevskii, Alexander}, title = {Quasi-frames of translates}, journal = {Comptes Rendus. Math\'ematique}, pages = {739--742}, publisher = {Elsevier}, volume = {347}, number = {13-14}, year = {2009}, doi = {10.1016/j.crma.2009.04.001}, language = {en}, url = {http://www.numdam.org/articles/10.1016/j.crma.2009.04.001/} }
TY - JOUR AU - Nitzan, Shahaf AU - Olevskii, Alexander TI - Quasi-frames of translates JO - Comptes Rendus. Mathématique PY - 2009 SP - 739 EP - 742 VL - 347 IS - 13-14 PB - Elsevier UR - http://www.numdam.org/articles/10.1016/j.crma.2009.04.001/ DO - 10.1016/j.crma.2009.04.001 LA - en ID - CRMATH_2009__347_13-14_739_0 ER -
Nitzan, Shahaf; Olevskii, Alexander. Quasi-frames of translates. Comptes Rendus. Mathématique, Volume 347 (2009) no. 13-14, pp. 739-742. doi : 10.1016/j.crma.2009.04.001. http://www.numdam.org/articles/10.1016/j.crma.2009.04.001/
[1] Density of Gabor frames, Appl. Comput. Harmon. Anal., Volume 7 (1999), pp. 292-304
[2] An Introduction to Harmonic Analysis, Dover Publications, Inc., New York, 1976
[3] Menshov representation spectra, J. Anal. Math., Volume 84 (2001), pp. 361-393
[4] A sparse sequence of exponentials closed on large sets, Bull. Am. Math. Soc., Volume 70 (1964), pp. 566-569
[5] Sparse exponential systems: completeness with estimates, Israel J. Math., Volume 158 (2007), pp. 205-215
[6] Completeness in of almost integer translates, C. R. Acad. Sci. Paris, Ser. I, Volume 324 (1997), pp. 987-991
[7] Approximation by translates in , Real Anal. Exchange, Volume 24 (1998/1999) no. 1, pp. 43-44
[8] Almost integer translates, Do nice generators exist?, J. Fourier Anal. Appl., Volume 10 (2004) no. 1, pp. 93-104
[9] Incompleteness of sparse coherent states, Appl. Comput. Harmon. Anal., Volume 2 (1995), pp. 148-153
Cited by Sources:
☆ Supported in part by the Israel Science Foundation.