Using the scale transform of a discrete time signal we define a new family of linear systems. We focus on a particular case related to function theory in the bidisk.
Utilisant la notion de transformée en échelle d'un signal à temps discret, nous définissons une nouvelle famille de systèmes linéaires. Nous considérons un cas particulier, lié à la théorie des fonctions dans le bidisque.
Accepted:
Published online:
@article{CRMATH_2009__347_11-12_603_0, author = {Alpay, Daniel and Mboup, Mamadou}, title = {Transform\'ee en \'echelle de signaux stationnaires}, journal = {Comptes Rendus. Math\'ematique}, pages = {603--608}, publisher = {Elsevier}, volume = {347}, number = {11-12}, year = {2009}, doi = {10.1016/j.crma.2009.03.030}, language = {fr}, url = {http://www.numdam.org/articles/10.1016/j.crma.2009.03.030/} }
TY - JOUR AU - Alpay, Daniel AU - Mboup, Mamadou TI - Transformée en échelle de signaux stationnaires JO - Comptes Rendus. Mathématique PY - 2009 SP - 603 EP - 608 VL - 347 IS - 11-12 PB - Elsevier UR - http://www.numdam.org/articles/10.1016/j.crma.2009.03.030/ DO - 10.1016/j.crma.2009.03.030 LA - fr ID - CRMATH_2009__347_11-12_603_0 ER -
%0 Journal Article %A Alpay, Daniel %A Mboup, Mamadou %T Transformée en échelle de signaux stationnaires %J Comptes Rendus. Mathématique %D 2009 %P 603-608 %V 347 %N 11-12 %I Elsevier %U http://www.numdam.org/articles/10.1016/j.crma.2009.03.030/ %R 10.1016/j.crma.2009.03.030 %G fr %F CRMATH_2009__347_11-12_603_0
Alpay, Daniel; Mboup, Mamadou. Transformée en échelle de signaux stationnaires. Comptes Rendus. Mathématique, Volume 347 (2009) no. 11-12, pp. 603-608. doi : 10.1016/j.crma.2009.03.030. http://www.numdam.org/articles/10.1016/j.crma.2009.03.030/
[1] Algorithme de Schur, espaces à noyau reproduisant et théorie des systèmes, Panoramas et Synthèses, vol. 6, Société Mathématique de France, Paris, 1998
[2] Hilbert spaces of analytic functions, inverse scattering and operator models, I, Integral Equations Operator Theory, Volume 7 (1984), pp. 589-641
[3] D. Alpay, D. Levanony, Linear stochastic systems: a white noise approach, Acta Appl. Math. (2009), . Published online: 12 February 2009 | DOI
[4] An introduction to white-noise theory and Malliavin calculus for fractional Brownian motion, stochastic analysis with applications to mathematical finance, Proc. R. Soc. Lond. Ser. A Math. Phys. Eng. Sci., Volume 460 (2004) no. 2041, pp. 347-372
[5] Feedback Control Theory, Macmillan Publishing Company, New York, 1992
[6] Abstract Harmonic Analysis, vol. I/II, Springer, Berlin, Göttingen, Heidelberg, 1963/1970
[7] Stochastic Partial Differential Equations, Probability and its Applications, Birkhäuser Boston Inc., Boston, MA, 1996
[8] The Markov Moment Problem and Extremal Problems, Translations of Mathematical Monographs, vol. 50, American Mathematical Society, Providence, RI, 1977
[9] White Noise Distribution Theory, Probability and Stochastics Series, CRC Press, Boca Raton, FL, 1996
[10] M. Mboup, A character-automorphic Hardy spaces approach to discrete-time scale-invariant systems, in: Proceedings of the 17th International Symposium on Mathematical Theory of Networks and Systems, Kyoto, Japan, July 24–28, 2006, pp. 183–188
[11] Positive polynomials on compact semi-algebraic sets, Indiana Univ. Math. J., Volume 42 (1993), pp. 969-984
Cited by Sources: