Analyse mathématique
Transformée en échelle de signaux stationnaires
[Scale transform of discrete stationary signals]
Comptes Rendus. Mathématique, Volume 347 (2009) no. 11-12, pp. 603-608.

Using the scale transform of a discrete time signal we define a new family of linear systems. We focus on a particular case related to function theory in the bidisk.

Utilisant la notion de transformée en échelle d'un signal à temps discret, nous définissons une nouvelle famille de systèmes linéaires. Nous considérons un cas particulier, lié à la théorie des fonctions dans le bidisque.

Received:
Accepted:
Published online:
DOI: 10.1016/j.crma.2009.03.030
Alpay, Daniel 1; Mboup, Mamadou 2, 3

1 Department of Mathematics, Ben Gurion University of the Negev, Israel
2 UFR Mathématiques et Informatique, CRIP5, Université Paris Descartes, 45, rue des Saints-Pères, 75270 Paris cedex 06, France
3 EPI ALIEN, INRIA
@article{CRMATH_2009__347_11-12_603_0,
     author = {Alpay, Daniel and Mboup, Mamadou},
     title = {Transform\'ee en \'echelle de signaux stationnaires},
     journal = {Comptes Rendus. Math\'ematique},
     pages = {603--608},
     publisher = {Elsevier},
     volume = {347},
     number = {11-12},
     year = {2009},
     doi = {10.1016/j.crma.2009.03.030},
     language = {fr},
     url = {http://www.numdam.org/articles/10.1016/j.crma.2009.03.030/}
}
TY  - JOUR
AU  - Alpay, Daniel
AU  - Mboup, Mamadou
TI  - Transformée en échelle de signaux stationnaires
JO  - Comptes Rendus. Mathématique
PY  - 2009
SP  - 603
EP  - 608
VL  - 347
IS  - 11-12
PB  - Elsevier
UR  - http://www.numdam.org/articles/10.1016/j.crma.2009.03.030/
DO  - 10.1016/j.crma.2009.03.030
LA  - fr
ID  - CRMATH_2009__347_11-12_603_0
ER  - 
%0 Journal Article
%A Alpay, Daniel
%A Mboup, Mamadou
%T Transformée en échelle de signaux stationnaires
%J Comptes Rendus. Mathématique
%D 2009
%P 603-608
%V 347
%N 11-12
%I Elsevier
%U http://www.numdam.org/articles/10.1016/j.crma.2009.03.030/
%R 10.1016/j.crma.2009.03.030
%G fr
%F CRMATH_2009__347_11-12_603_0
Alpay, Daniel; Mboup, Mamadou. Transformée en échelle de signaux stationnaires. Comptes Rendus. Mathématique, Volume 347 (2009) no. 11-12, pp. 603-608. doi : 10.1016/j.crma.2009.03.030. http://www.numdam.org/articles/10.1016/j.crma.2009.03.030/

[1] Alpay, D. Algorithme de Schur, espaces à noyau reproduisant et théorie des systèmes, Panoramas et Synthèses, vol. 6, Société Mathématique de France, Paris, 1998

[2] Alpay, D.; Dym, H. Hilbert spaces of analytic functions, inverse scattering and operator models, I, Integral Equations Operator Theory, Volume 7 (1984), pp. 589-641

[3] D. Alpay, D. Levanony, Linear stochastic systems: a white noise approach, Acta Appl. Math. (2009), . Published online: 12 February 2009 | DOI

[4] Biagini, F.; Øksendal, B.; Sulem, A.; Wallner, N. An introduction to white-noise theory and Malliavin calculus for fractional Brownian motion, stochastic analysis with applications to mathematical finance, Proc. R. Soc. Lond. Ser. A Math. Phys. Eng. Sci., Volume 460 (2004) no. 2041, pp. 347-372

[5] Doyle, J.; Francis, B.; Tannenbaum, A. Feedback Control Theory, Macmillan Publishing Company, New York, 1992

[6] Hewitt, E.; Ross, K.A. Abstract Harmonic Analysis, vol. I/II, Springer, Berlin, Göttingen, Heidelberg, 1963/1970

[7] Holden, H.; Øksendal, B.; Ubøe, J.; Zhang, T. Stochastic Partial Differential Equations, Probability and its Applications, Birkhäuser Boston Inc., Boston, MA, 1996

[8] Kreĭn, M.G.; Nudelman, A.A. The Markov Moment Problem and Extremal Problems, Translations of Mathematical Monographs, vol. 50, American Mathematical Society, Providence, RI, 1977

[9] Kuo, H.-H. White Noise Distribution Theory, Probability and Stochastics Series, CRC Press, Boca Raton, FL, 1996

[10] M. Mboup, A character-automorphic Hardy spaces approach to discrete-time scale-invariant systems, in: Proceedings of the 17th International Symposium on Mathematical Theory of Networks and Systems, Kyoto, Japan, July 24–28, 2006, pp. 183–188

[11] Putinar, M. Positive polynomials on compact semi-algebraic sets, Indiana Univ. Math. J., Volume 42 (1993), pp. 969-984

Cited by Sources: