We prove that in three of the classical turnover models in pharmacodynamics the time to maximal response increases with increasing drug dose when the concentration of the drug in the blood plasma decreases exponentially with time.
Nous démontrons que dans des trois modèles turnovers classiques en pharmacodynamique le temps de réponse maximal augmente en fonction de la dose de drogue lorsque la concentration du médicament dans le plasma sanguin diminue exponentiellement en temps.
Published online:
@article{CRMATH_2009__347_9-10_495_0, author = {Nguyen, Hoai-Minh and Peletier, Lambertus A.}, title = {Monotonicity of the peak time in turnover models}, journal = {Comptes Rendus. Math\'ematique}, pages = {495--500}, publisher = {Elsevier}, volume = {347}, number = {9-10}, year = {2009}, doi = {10.1016/j.crma.2009.02.005}, language = {en}, url = {http://www.numdam.org/articles/10.1016/j.crma.2009.02.005/} }
TY - JOUR AU - Nguyen, Hoai-Minh AU - Peletier, Lambertus A. TI - Monotonicity of the peak time in turnover models JO - Comptes Rendus. Mathématique PY - 2009 SP - 495 EP - 500 VL - 347 IS - 9-10 PB - Elsevier UR - http://www.numdam.org/articles/10.1016/j.crma.2009.02.005/ DO - 10.1016/j.crma.2009.02.005 LA - en ID - CRMATH_2009__347_9-10_495_0 ER -
%0 Journal Article %A Nguyen, Hoai-Minh %A Peletier, Lambertus A. %T Monotonicity of the peak time in turnover models %J Comptes Rendus. Mathématique %D 2009 %P 495-500 %V 347 %N 9-10 %I Elsevier %U http://www.numdam.org/articles/10.1016/j.crma.2009.02.005/ %R 10.1016/j.crma.2009.02.005 %G en %F CRMATH_2009__347_9-10_495_0
Nguyen, Hoai-Minh; Peletier, Lambertus A. Monotonicity of the peak time in turnover models. Comptes Rendus. Mathématique, Volume 347 (2009) no. 9-10, pp. 495-500. doi : 10.1016/j.crma.2009.02.005. http://www.numdam.org/articles/10.1016/j.crma.2009.02.005/
[1] A mathematical model of the glucose-tolerance test, Phys. Med. Biol., Volume 9 (1964), pp. 203-213
[2] Comparison of four basic models of indirect pharmacodynamic responses, J. Pharmacokin. Biopharm., Volume 21 (1993), pp. 457-478
[3] Pharmacokinetic/Pharmacodynamic Data Analysis: Concepts and Applications, Swedish Pharmaceutical Press, Stockholm, 2006
[4] Mathematical formalism for the properties of four basic models of indirect pharmacodynamic responses, J. Pharmacokin. Biopharm., Volume 25 (1997), pp. 107-123
[5] Mathematical formalism and characteristics of four basic models of indirect pharmacodynamic responses for drug infusions, J. Pharmacokin. Biopharm., Volume 26 (1998), pp. 385-408
[6] Integrated functions for four basic models of indirect pharmacodynamic response, J. Pharm. Sci., Volume 87 (1998), pp. 67-72
[7] Diversity of mechanism-based pharmacodynamic models, Drug Metab. Dispos., Volume 31 (2003), pp. 510-519
[8] Characterisation of the dose-dependent time of peak effect in indirect response models, J. Pharmacokin. Biopharm., Volume 26 (1998), pp. 183-206
[9] Kinetics of pharmacological effects in man: The anticoagulant action of warfarin, Clin. Phamacol. Ther., Volume 10 (1969), pp. 22-35
[10] Monotonicity of time to peak response with respect to drug dose for turnover models, Differential and Integral Equations, Volume 22 (2009), pp. 1-26
[11] A dynamical systems analysis of the indirect response model with special emphasis on time to peak response, J. Pharmacokin. Pharmacodyn., Volume 32 (2005), pp. 607-654
[12] Characterisation of four basic models of indirect pharmacodynamic responses, J. Pharmacokin. Biopharm., Volume 24 (1996), pp. 611-635
[13] The time of maximum effect for model selection in pharmacokinetic–pharmacodynamic analysis applied to frusemide, [Clinical Trial. Journal Article. Randomized Controlled Trial] British Journal of Clinical Pharmacology, Volume 45 (1998), pp. 63-70
Cited by Sources: