Nous étudions les problèmes de Cauchy bien posès pour les systèmes hyperboliques linéaires du 1er ordre avec des racines caractéristiques superlinéaires lorsque
We investigate the global well-posedness of the Cauchy problem for first order linear hyperbolic systems allowing superlinear growth of the characteristic roots for
Accepté le :
Publié le :
@article{CRMATH_2009__347_1-2_49_0, author = {Gourdin, Daniel and Gramchev, Todor}, title = {Global {Cauchy} problems for hyperbolic systems with characteristics admitting superlinear growth for $ |x|\to \infty $}, journal = {Comptes Rendus. Math\'ematique}, pages = {49--54}, publisher = {Elsevier}, volume = {347}, number = {1-2}, year = {2009}, doi = {10.1016/j.crma.2008.11.009}, language = {en}, url = {https://www.numdam.org/articles/10.1016/j.crma.2008.11.009/} }
TY - JOUR AU - Gourdin, Daniel AU - Gramchev, Todor TI - Global Cauchy problems for hyperbolic systems with characteristics admitting superlinear growth for $ |x|\to \infty $ JO - Comptes Rendus. Mathématique PY - 2009 SP - 49 EP - 54 VL - 347 IS - 1-2 PB - Elsevier UR - https://www.numdam.org/articles/10.1016/j.crma.2008.11.009/ DO - 10.1016/j.crma.2008.11.009 LA - en ID - CRMATH_2009__347_1-2_49_0 ER -
%0 Journal Article %A Gourdin, Daniel %A Gramchev, Todor %T Global Cauchy problems for hyperbolic systems with characteristics admitting superlinear growth for $ |x|\to \infty $ %J Comptes Rendus. Mathématique %D 2009 %P 49-54 %V 347 %N 1-2 %I Elsevier %U https://www.numdam.org/articles/10.1016/j.crma.2008.11.009/ %R 10.1016/j.crma.2008.11.009 %G en %F CRMATH_2009__347_1-2_49_0
Gourdin, Daniel; Gramchev, Todor. Global Cauchy problems for hyperbolic systems with characteristics admitting superlinear growth for $ |x|\to \infty $. Comptes Rendus. Mathématique, Tome 347 (2009) no. 1-2, pp. 49-54. doi : 10.1016/j.crma.2008.11.009. https://www.numdam.org/articles/10.1016/j.crma.2008.11.009/
[1] Introduction to the Theory of Linear Partial Differential Equations, Studies in Mathematics and its Applications, vol. 14, North-Holland Publishing Co., Amsterdam–New York, 1982
[2] The Technique of Pseudodifferential Operators, LMS Lecture Note Series, vol. 202, Cambridge Univ. Press, Cambridge, 1995
[3] Cauchy problem for SG-hyperbolic equations with constant multiplicities, Ricerche Mat., Volume 48 (1999) no. suppl., pp. 25-43
[4] Problème de Cauchy non caractéristique pour les systèmes hyperboliques à caractéristiques de multiplicité variable, Domaine de dépendence, Comm. Partial Differential Equations, Volume 4 (1979), pp. 447-507
[5] Global in time solutions of evolution equations in scales of Banach function spaces in
[6] Solutions globales d'un problème de Cauchy linèaire, J. Funct. Anal., Volume 202 (2003) no. 1, pp. 123-146
[7] Ordinary Differential Equations, John Wiley & Sons, New York–London–Sydney, 1964
[8] Representation of solutions and regularity properties for weakly hyperbolic systems, Pseudo-Differential Operators and Related Topics, Oper. Theory Adv. Appl., vol. 164, Birkhäuser, Basel, 2006, pp. 53-63
[9] On the Cauchy Problem, Notes and Reports in Mathematics in Science and Engineering, vol. 3, Science Press and Academic Press, 1985
[10] Global
[11] The nonlocal existence problem of ordinary differential equations, Amer. J. Math., Volume 67 (1945), pp. 277-284 (125–132)
- Global Cauchy problems on Rn for weakly hyperbolic systems with coefficients admitting superlinear growth for |x| → ∞, Bulletin des Sciences Mathématiques, Volume 150 (2019), p. 35 | DOI:10.1016/j.bulsci.2016.01.002
- Weak Solutions of the Cohomological Equation on ℝ 2
for Regular Vector Fields, Mathematical Physics, Analysis and Geometry, Volume 18 (2015) no. 1 | DOI:10.1007/s11040-015-9187-4 - Cauchy problems for hyperbolic systems in Rn with irregular principal symbol in time and for |x|→∞, Journal of Differential Equations, Volume 250 (2011) no. 5, p. 2624 | DOI:10.1016/j.jde.2010.11.020
- The Continuity of Solutions with Respect to a Parameter to Symmetric Hyperbolic Systems, Pseudo-Differential Operators: Analysis, Applications and Computations (2011), p. 219 | DOI:10.1007/978-3-0348-0049-5_13
Cité par 4 documents. Sources : Crossref