Dynamical Systems/Ordinary Differential Equations
Birth of attracting compact invariant submanifolds diffeomorphic to moment-angle manifolds in generic families of dynamics
Comptes Rendus. Mathématique, Volume 346 (2008) no. 19-20, pp. 1099-1102.

All the compact intersections of quadrics known as moment-angle manifolds appear as attractors in generalized Hopf bifurcations.

Toutes les intersections compactes de quadriques connues sous le nom de variétés moment-angle apparaissent comme attracteurs dans des bifurcations de Hopf généralisées.

Received:
Accepted:
Published online:
DOI: 10.1016/j.crma.2008.09.017
Chaperon, Marc 1; López De Medrano, Santiago 2

1 Institut de mathématiques de Jussieu & Université Paris 7, UFR de mathématiques, site Chevaleret, case 7012, 75205 Paris cedex 13, France
2 Facultad de Ciencias & Instituto de Matemáticas, UNAM, Ciudad Universitaria, México, D.F., 04510, Mexico
@article{CRMATH_2008__346_19-20_1099_0,
     author = {Chaperon, Marc and L\'opez De Medrano, Santiago},
     title = {Birth of attracting compact invariant submanifolds diffeomorphic to moment-angle manifolds in generic families of dynamics},
     journal = {Comptes Rendus. Math\'ematique},
     pages = {1099--1102},
     publisher = {Elsevier},
     volume = {346},
     number = {19-20},
     year = {2008},
     doi = {10.1016/j.crma.2008.09.017},
     language = {en},
     url = {http://www.numdam.org/articles/10.1016/j.crma.2008.09.017/}
}
TY  - JOUR
AU  - Chaperon, Marc
AU  - López De Medrano, Santiago
TI  - Birth of attracting compact invariant submanifolds diffeomorphic to moment-angle manifolds in generic families of dynamics
JO  - Comptes Rendus. Mathématique
PY  - 2008
SP  - 1099
EP  - 1102
VL  - 346
IS  - 19-20
PB  - Elsevier
UR  - http://www.numdam.org/articles/10.1016/j.crma.2008.09.017/
DO  - 10.1016/j.crma.2008.09.017
LA  - en
ID  - CRMATH_2008__346_19-20_1099_0
ER  - 
%0 Journal Article
%A Chaperon, Marc
%A López De Medrano, Santiago
%T Birth of attracting compact invariant submanifolds diffeomorphic to moment-angle manifolds in generic families of dynamics
%J Comptes Rendus. Mathématique
%D 2008
%P 1099-1102
%V 346
%N 19-20
%I Elsevier
%U http://www.numdam.org/articles/10.1016/j.crma.2008.09.017/
%R 10.1016/j.crma.2008.09.017
%G en
%F CRMATH_2008__346_19-20_1099_0
Chaperon, Marc; López De Medrano, Santiago. Birth of attracting compact invariant submanifolds diffeomorphic to moment-angle manifolds in generic families of dynamics. Comptes Rendus. Mathématique, Volume 346 (2008) no. 19-20, pp. 1099-1102. doi : 10.1016/j.crma.2008.09.017. http://www.numdam.org/articles/10.1016/j.crma.2008.09.017/

[1] Bosio, F.; Meersseman, L. Real quadrics in Cn, complex manifolds and convex polytopes, Acta Math., Volume 197 (2006) no. 1, pp. 53-127

[2] Bukhshtaber, V.; Panov, T. Torus Actions and Their Applications in Topology and Combinatorics, University Lecture Series, vol. 24, Amer. Math. Soc., 2002

[3] Chaperon, M. Géométrie différentielle et singularités de systèmes dynamiques, Astérisque (1986), pp. 138-139

[4] Chaperon, M. Ck-conjugacy of holomorphic flows near a singularity, Publ. Math. I.H.E.S., Volume 64 (1987), pp. 143-183

[5] Chaperon, M. Birth control in generalized Hopf bifurcations, C. R. Acad. Sci. Paris, Ser. I, Volume 345 (2007), pp. 453-458

[6] M. Chaperon, S. López de Medrano, Generalized Hopf bifurcations, in press

[7] Chaperon, M.; Kammerer-Colin de Verdière, M.; López de Medrano, S. More compact invariant manifolds appearing in the non-linear coupling of oscillators, C. R. Acad. Sci. Paris, Ser. I, Volume 342 (2006), pp. 301-305

[8] Davis, M.; Januszkiewicz, T. Convex polytopes, Coxeter orbifolds and torus actions, Duke Math. J., Volume 62 (1991) no. 2, pp. 417-451

[9] Fenichel, N. Persistence and smoothness of invariant manifolds for flows, Indiana Univ. Math. J., Volume 21 (1971), pp. 193-225

[10] Hirsch, M.W.; Pugh, C.C.; Shub, M. Invariant Manifolds, Lecture Notes in Mathematics, vol. 583, Springer-Verlag, 1977

[11] López de Medrano, S. The space of Siegel leaves of a holomorphic vector field, Dynamical Systems, Lecture Notes in Mathematics, vol. 1345, Springer-Verlag, 1988, pp. 233-245

[12] López de Medrano, S.; Verjovsky, A. A new family of complex, compact, non-symplectic manifolds, Bol. Soc. Brasil. Mat., Volume 20 (1997), p. 2

[13] Meersseman, L. A new geometric construction of compact complex manifolds in any dimension, Math. Ann., Volume 317 (2000) no. 1, pp. 79-115

Cited by Sources: