Numerical Analysis
Adaptive mesh for algebraic orthogonal subscale stabilization of convective dispersive transport
Comptes Rendus. Mathématique, Volume 346 (2008) no. 21-22, pp. 1187-1190.

We derive a residual a posteriori error estimator for the algebraic orthogonal subscales stabilization of convective dispersive transport equation. The estimator yields upper bound on the error which is global and lower bound that is local. Numerical studies show the behaviour of the error indicator and how it is robust to deal with singularities.

On développe un estimateur d'erreur a posteriori pour l'équation de convection dispersion stabilisée par la méthode algébrique de sous-mailles orthogonales. On obtient une majoration et une minoration de l'erreur. Les résultats numériques montre l'efficacité de l'indicateur d'erreur dans les régions des singularités où la solution présente des couches limites.

Received:
Accepted:
Published online:
DOI: 10.1016/j.crma.2008.09.016
Achchab, Boujemaâ 1; El Fatini, Mohamed 1, 2; Ern, Alexandre 3; Souissi, A. 4

1 Université Hassan I, LM2CE, FSEJS, PB 784, Settat, Morocco
2 Université Hassan II, L3A, FS Ben M'Sik, PB 7955, Casablanca, Morocco
3 Université Paris-Est, CERMICS, Ecole des Ponts, F 77455 Marne la vallée cedex 2, France
4 Université Mohammed V, LAM, FS, PB 1014, Rabat, Morocco
@article{CRMATH_2008__346_21-22_1187_0,
     author = {Achchab, Boujema\^a and El Fatini, Mohamed and Ern, Alexandre and Souissi, A.},
     title = {Adaptive mesh for algebraic orthogonal subscale stabilization of convective dispersive transport},
     journal = {Comptes Rendus. Math\'ematique},
     pages = {1187--1190},
     publisher = {Elsevier},
     volume = {346},
     number = {21-22},
     year = {2008},
     doi = {10.1016/j.crma.2008.09.016},
     language = {en},
     url = {http://www.numdam.org/articles/10.1016/j.crma.2008.09.016/}
}
TY  - JOUR
AU  - Achchab, Boujemaâ
AU  - El Fatini, Mohamed
AU  - Ern, Alexandre
AU  - Souissi, A.
TI  - Adaptive mesh for algebraic orthogonal subscale stabilization of convective dispersive transport
JO  - Comptes Rendus. Mathématique
PY  - 2008
SP  - 1187
EP  - 1190
VL  - 346
IS  - 21-22
PB  - Elsevier
UR  - http://www.numdam.org/articles/10.1016/j.crma.2008.09.016/
DO  - 10.1016/j.crma.2008.09.016
LA  - en
ID  - CRMATH_2008__346_21-22_1187_0
ER  - 
%0 Journal Article
%A Achchab, Boujemaâ
%A El Fatini, Mohamed
%A Ern, Alexandre
%A Souissi, A.
%T Adaptive mesh for algebraic orthogonal subscale stabilization of convective dispersive transport
%J Comptes Rendus. Mathématique
%D 2008
%P 1187-1190
%V 346
%N 21-22
%I Elsevier
%U http://www.numdam.org/articles/10.1016/j.crma.2008.09.016/
%R 10.1016/j.crma.2008.09.016
%G en
%F CRMATH_2008__346_21-22_1187_0
Achchab, Boujemaâ; El Fatini, Mohamed; Ern, Alexandre; Souissi, A. Adaptive mesh for algebraic orthogonal subscale stabilization of convective dispersive transport. Comptes Rendus. Mathématique, Volume 346 (2008) no. 21-22, pp. 1187-1190. doi : 10.1016/j.crma.2008.09.016. http://www.numdam.org/articles/10.1016/j.crma.2008.09.016/

[1] B. Achchab, M. El Fatini, A. Ern, A. Souissi, A posteriori error estimates for subgrid viscosity stabilized approximations of convection–diffusion equations, Appl. Math. Lett. (2008), submitted for publication

[2] D. Bernardi, F. Hecht, K. Ohtsuka, O. Pironneau, FreeFem+ for Macs, Pcs, Linux (Dec 25 2008) http://www.freefem.org

[3] Brezzi, F.; Russo, A. Choosing bubbles for advection–diffusion problems, Math. Models Methods Appl. Sci., Volume 4 (1994), pp. 571-587

[4] Brooks, A.N.; Hughes, T.J.R. Streamline upwind/Petrov Galerkin formulation for convection dominated flows with particular emphasis on the incompressible Navier–Stokes equations, Model. Comput. Methods Appl. Mech. Engrg., Volume 32 (1982) no. 1-3, p. 199

[5] Ciarlet, P.G. The Finite Element Methods for Elliptic Problems, North-Holland, Amsterdam, 1978

[6] Clément, P. Approximation by finite element functions using local regularization, RAIRO, Anal. Numér., Volume 9 (1975), pp. 77-84

[7] Codina, R. On stabilized finite element methods for linear systems of convection–diffusion–reaction equations, Comp. Meth. Appl. Mech. Engrg., Volume 188 (2000), pp. 61-82

[8] Guermond, J.L. Subgrid Stabilization of Galerkin approximations of linear monotone operators, IMA J. Numer. Anal., Volume 21 (2001), pp. 165-197

[9] Hughes, T.J.R. Multiscale phenomena: Green's functions, the Dirichlet-to-Neumann formulation, subgrid-scale models, bubbles and the origin of stabilized methods, Comput. Meth. Appl. Mech. Engrg. l, Volume 27 (1995), pp. 387-401

[10] F. Jouve, Xd3d-Version 7.72, Visualisation de maillages 2D et 3D et de surfaces 3D sous X, http://www.cmap.polytechnique.fr

[11] Pironneau, O. On the transport–diffusion algorithm and its applications to the Navier–Stokes equations, Numer. Math., Volume 38 (1982), pp. 309-332

[12] Verfürth, R. A posteriori error estimators for convection–diffusion equations, Numer. Math, Volume 80 (1998), pp. 641-663

Cited by Sources: