Complex Analysis
An extremal problem for a class of entire functions
Comptes Rendus. Mathématique, Volume 346 (2008) no. 15-16, pp. 825-828.

Let f be an entire function of the exponential type, such that the indicator diagram is in [iσ,iσ], σ>0. Then the upper density of f is bounded by , where c1.508879 is the unique solution of the equation

log(c2+1+c)=1+c−2.
This bound is optimal.

Soit f une fonction entière d'indicatrice contenue dans l'intervalle [iσ,iσ], σ>0. Alors la borne supérieure des zéros de f ne dépasse pas , où c1,508879 est la solution d'équation,

log(c2+1+c)=1+c−2.
Cette borne est exacte.

Received:
Accepted:
Published online:
DOI: 10.1016/j.crma.2008.06.009
Eremenko, Alexandre 1; Yuditskii, Peter 2

1 Purdue University, West Lafayette, IN 47907, USA
2 J. Kepler University, Linz A-4040, Austria
@article{CRMATH_2008__346_15-16_825_0,
     author = {Eremenko, Alexandre and Yuditskii, Peter},
     title = {An extremal problem for a class of entire functions},
     journal = {Comptes Rendus. Math\'ematique},
     pages = {825--828},
     publisher = {Elsevier},
     volume = {346},
     number = {15-16},
     year = {2008},
     doi = {10.1016/j.crma.2008.06.009},
     language = {en},
     url = {http://www.numdam.org/articles/10.1016/j.crma.2008.06.009/}
}
TY  - JOUR
AU  - Eremenko, Alexandre
AU  - Yuditskii, Peter
TI  - An extremal problem for a class of entire functions
JO  - Comptes Rendus. Mathématique
PY  - 2008
SP  - 825
EP  - 828
VL  - 346
IS  - 15-16
PB  - Elsevier
UR  - http://www.numdam.org/articles/10.1016/j.crma.2008.06.009/
DO  - 10.1016/j.crma.2008.06.009
LA  - en
ID  - CRMATH_2008__346_15-16_825_0
ER  - 
%0 Journal Article
%A Eremenko, Alexandre
%A Yuditskii, Peter
%T An extremal problem for a class of entire functions
%J Comptes Rendus. Mathématique
%D 2008
%P 825-828
%V 346
%N 15-16
%I Elsevier
%U http://www.numdam.org/articles/10.1016/j.crma.2008.06.009/
%R 10.1016/j.crma.2008.06.009
%G en
%F CRMATH_2008__346_15-16_825_0
Eremenko, Alexandre; Yuditskii, Peter. An extremal problem for a class of entire functions. Comptes Rendus. Mathématique, Volume 346 (2008) no. 15-16, pp. 825-828. doi : 10.1016/j.crma.2008.06.009. http://www.numdam.org/articles/10.1016/j.crma.2008.06.009/

[1] Beurling, A.; Malliavin, P. On Fourier transforms of measures with compact support, Acta Math., Volume 118 (1967), pp. 291-309

[2] Eremenko, A.; Novikov, D. Oscillation of Fourier integrals with a spectral gap, J. Math. Pures Appl., Volume 83 (2004) no. 3, pp. 313-365

[3] Hörmander, L. Analysis of Linear Partial Differential Operators, vols. I, II, Springer, Berlin, 1983

[4] Kahane, P.; Rubel, L. On Weierstrass products of zero type on the real axis, Illinois Math. J., Volume 4 (1960), pp. 584-592

[5] Koosis, P. Leçons sur le théorème de Beurling et Malliavin, Publ. CRM, Montréal, 1996

[6] Levin, B. Distribution of Zeros of Entire Functions, Amer. Math. Soc., Providence, RI, 1980

[7] Levin, B. Subharmonic majorants and some applications, Complex Analysis, Birkhäuser, Basel, 1988, pp. 181-190

[8] Levin, B. The connection of a majorant with a conformal mapping, II, Teor. Funktsii Funktional Anal. i Prilozhen., Volume 52 (1989) no. 5, pp. 3-21 (in Russian). English translation in: J. Soviet Math., 52, 1990, pp. 3351-3364

[9] Matsaev, V.; Sodin, M. Distribution of Hilbert transforms of measures, Geom. Funct. Anal., Volume 10 (2000), p. 1 (160–184)

[10] Roumieu, C. Sur quelques extensions de la notion de distribution, Ann. Sci. École Norm. Sup., Volume 77 (1960), pp. 41-121

Cited by Sources: