Numerical Analysis
Entropy-based nonlinear viscosity for Fourier approximations of conservation laws
Comptes Rendus. Mathématique, Volume 346 (2008) no. 13-14, pp. 801-806.

An Entropy-based nonlinear viscosity for approximating conservation laws using Fourier expansions is proposed. The viscosity is proportional to the entropy residual of the equation (or system) and thus preserves the spectral accuracy of the method.

On propose une technique de viscosité non-linéaire entropique pour approcher les lois de conservation par une méthode spectrale Fourier. La viscosité est proportionelle au résidu de l'équation d'évolution de l'entropie et est ainsi spectralement petite quand la solution est régulière.

Received:
Accepted:
Published online:
DOI: 10.1016/j.crma.2008.05.013
Guermond, Jean-Luc 1; Pasquetti, Richard 2

1 Department of Mathematics, Texas A&M University, College Station, TX 77843-3368, USA
2 Laboratoire J.A. Dieudonné, UMR CNRS 6621, Université de Nice-Sophia Antipolis, parc Valrose, 06108 Nice cedex 02, France
@article{CRMATH_2008__346_13-14_801_0,
     author = {Guermond, Jean-Luc and Pasquetti, Richard},
     title = {Entropy-based nonlinear viscosity for {Fourier} approximations of conservation laws},
     journal = {Comptes Rendus. Math\'ematique},
     pages = {801--806},
     publisher = {Elsevier},
     volume = {346},
     number = {13-14},
     year = {2008},
     doi = {10.1016/j.crma.2008.05.013},
     language = {en},
     url = {http://www.numdam.org/articles/10.1016/j.crma.2008.05.013/}
}
TY  - JOUR
AU  - Guermond, Jean-Luc
AU  - Pasquetti, Richard
TI  - Entropy-based nonlinear viscosity for Fourier approximations of conservation laws
JO  - Comptes Rendus. Mathématique
PY  - 2008
SP  - 801
EP  - 806
VL  - 346
IS  - 13-14
PB  - Elsevier
UR  - http://www.numdam.org/articles/10.1016/j.crma.2008.05.013/
DO  - 10.1016/j.crma.2008.05.013
LA  - en
ID  - CRMATH_2008__346_13-14_801_0
ER  - 
%0 Journal Article
%A Guermond, Jean-Luc
%A Pasquetti, Richard
%T Entropy-based nonlinear viscosity for Fourier approximations of conservation laws
%J Comptes Rendus. Mathématique
%D 2008
%P 801-806
%V 346
%N 13-14
%I Elsevier
%U http://www.numdam.org/articles/10.1016/j.crma.2008.05.013/
%R 10.1016/j.crma.2008.05.013
%G en
%F CRMATH_2008__346_13-14_801_0
Guermond, Jean-Luc; Pasquetti, Richard. Entropy-based nonlinear viscosity for Fourier approximations of conservation laws. Comptes Rendus. Mathématique, Volume 346 (2008) no. 13-14, pp. 801-806. doi : 10.1016/j.crma.2008.05.013. http://www.numdam.org/articles/10.1016/j.crma.2008.05.013/

[1] Abgrall, R. Toward the ultimate conservative scheme: following the quest, J. Comput. Phys., Volume 167 (2001) no. 2, pp. 277-315

[2] Chen, G.-Q.; Du, Q.; Tadmor, E. Spectral viscosity approximations to multidimensional scalar conservation laws, Math. Comp., Volume 61 (1993), pp. 629-643

[3] Gottlieb, S.; Shu, C.-W.; Tadmor, E. Strong stability-preserving high-order time discretization methods, SIAM Rev., Volume 43 (2001) no. 1, pp. 89-112

[4] Guermond, J.-L.; Prudhomme, S. On the construction of suitable solutions to the Navier–Stokes equations and questions regarding the definition of large eddy simulation, Physica D, Volume 207 (2005), pp. 64-78

[5] Johnson, C.; Szepessy, A.; Hansbo, P. On the convergence of shock-capturing streamline diffusion finite element methods for hyperbolic conservation laws, Math. Comp., Volume 54 (1990) no. 189, pp. 107-129

[6] Karamanos, G.-S.; Karniadakis, G.E. A spectral vanishing viscosity method for large-eddy simulations, J. Comput. Phys., Volume 163 (2000), pp. 22-50

[7] Maday, Y.; Ould Kaber, M.; Tadmor, E. Legendre pseudospectral viscosity method for nonlinear conservation laws, SIAM J. Numer. Anal., Volume 30 (1993) no. 2, pp. 321-342

[8] Pasquetti, R. Spectral vanishing viscosity method for large-eddy simulation of turbulent flows, J. Sci. Comp., Volume 27 (2006) no. 1–3, pp. 365-375

[9] Petrova, G.; Kurganov, A.; Popov, B. Adaptive semi-discrete central-upwind schemes for nonconvex hyperbolic conservation laws, SIAM J. Sci. Comput., Volume 29 (2007) no. 6, pp. 2381-2401

[10] Tadmor, E. Convergence of spectral methods for nonlinear conservation laws, SIAM J. Numer. Anal., Volume 26 (1989) no. 1, pp. 30-44

Cited by Sources: