Mathematical Analysis/Partial Differential Equations
A case of density in W2,p(M;N)
[Un cas de densité dans W2,p(M;N)]
Comptes Rendus. Mathématique, Tome 346 (2008) no. 13-14, pp. 735-740.

On considère deux variétés riemaniennes compactes sans bord Mm et Nn. Quand m12p<m, on montre que les fonctions lisses sauf en un nombre fini de points sont denses dans W2,p(M;N). Si la variété N vérifie πm1(N)={0}, alors C(M;N) est dense dans W2,p(M;N).

Given two compact Riemannian manifolds Mm,Nn without boundary and m12p<m, we show that maps which are smooth except on finitely many points are dense in W2,p(M;N). If, in addition, πm1(N) is trivial, then C(M;N) is dense in W2,p(M;N).

Accepté le :
Publié le :
DOI : 10.1016/j.crma.2008.05.006
Bousquet, Pierre 1 ; Ponce, Augusto C. 2 ; Van Schaftingen, Jean 3

1 Unité de mathématiques pures et appliquées (UMR CNRS 5669), ENS Lyon, 46, allée d'Italie, 69007 Lyon, France
2 Laboratoire de mathématiques et physique théorique (UMR CNRS 6083), Université de Tours, 37200 Tours, France
3 Département de mathématique, Université catholique de Louvain, chemin du Cyclotron 2, 1348 Louvain-la-Neuve, Belgique
@article{CRMATH_2008__346_13-14_735_0,
     author = {Bousquet, Pierre and Ponce, Augusto C. and Van Schaftingen, Jean},
     title = {A case of density in $ {W}^{2,p}(M;N)$},
     journal = {Comptes Rendus. Math\'ematique},
     pages = {735--740},
     publisher = {Elsevier},
     volume = {346},
     number = {13-14},
     year = {2008},
     doi = {10.1016/j.crma.2008.05.006},
     language = {en},
     url = {http://www.numdam.org/articles/10.1016/j.crma.2008.05.006/}
}
TY  - JOUR
AU  - Bousquet, Pierre
AU  - Ponce, Augusto C.
AU  - Van Schaftingen, Jean
TI  - A case of density in $ {W}^{2,p}(M;N)$
JO  - Comptes Rendus. Mathématique
PY  - 2008
SP  - 735
EP  - 740
VL  - 346
IS  - 13-14
PB  - Elsevier
UR  - http://www.numdam.org/articles/10.1016/j.crma.2008.05.006/
DO  - 10.1016/j.crma.2008.05.006
LA  - en
ID  - CRMATH_2008__346_13-14_735_0
ER  - 
%0 Journal Article
%A Bousquet, Pierre
%A Ponce, Augusto C.
%A Van Schaftingen, Jean
%T A case of density in $ {W}^{2,p}(M;N)$
%J Comptes Rendus. Mathématique
%D 2008
%P 735-740
%V 346
%N 13-14
%I Elsevier
%U http://www.numdam.org/articles/10.1016/j.crma.2008.05.006/
%R 10.1016/j.crma.2008.05.006
%G en
%F CRMATH_2008__346_13-14_735_0
Bousquet, Pierre; Ponce, Augusto C.; Van Schaftingen, Jean. A case of density in $ {W}^{2,p}(M;N)$. Comptes Rendus. Mathématique, Tome 346 (2008) no. 13-14, pp. 735-740. doi : 10.1016/j.crma.2008.05.006. http://www.numdam.org/articles/10.1016/j.crma.2008.05.006/

[1] Bethuel, F. A characterization of maps in H1(B3,S2) which can be approximated by smooth maps, Ann. Inst. H. Poincaré Anal. Non Linéaire, Volume 7 (1990), pp. 269-286

[2] Bethuel, F. The approximation problem for Sobolev maps between two manifolds, Acta Math., Volume 167 (1991), pp. 153-206

[3] Bethuel, F.; Coron, J.-M.; Demengel, F. A cohomological criterion for density of smooth maps in Sobolev spaces between two manifolds, Orsay, 1990 (NATO Adv. Sci. Inst. Ser. C Math. Phys. Sci.), Volume vol. 332 (1990), pp. 15-23

[4] Bethuel, F.; Zheng, X.M. Density of smooth functions between two manifolds in Sobolev spaces, J. Funct. Anal., Volume 80 (1988), pp. 60-75

[5] P. Bousquet, A.C. Ponce, J. Van Schaftingen, Strong density in W2,p(M;N), in preparation

[6] Brezis, H.; Coron, J.-M.; Lieb, E.H. Harmonic maps with defects, Commun. Math. Phys., Volume 107 (1986), pp. 649-705

[7] Brezis, H.; Nirenberg, L. Degree theory and BMO. I. Compact manifolds without boundaries. Selecta Math. (N.S.), 1 (1995), pp. 197-263

[8] Hang, F.; Lin, F.-H. Topology of Sobolev mappings. II, Acta Math., Volume 191 (2003), pp. 55-107

[9] Mironescu, P. Sobolev maps on manifolds: degree, approximation, lifting, Perspectives in Nonlinear Partial Differential Equations, Contemp. Math., vol. 446, Amer. Math. Soc., Providence, RI, 2007, pp. 413-436 (In honor of Haïm Brezis)

[10] Schoen, R.; Uhlenbeck, K. Boundary regularity and the Dirichlet problem for harmonic maps, J. Differential Geom., Volume 18 (1983), pp. 253-268

Cité par Sources :