Group Theory
A well-ordering of dual braid monoids
Comptes Rendus. Mathématique, Volume 346 (2008) no. 13-14, pp. 729-734.

Let Bn+ denote the dual braid monoid on n strands, i.e., the submonoid of the braid group Bn consisting of the braids that can be expressed as positive words in the Birman–Ko–Lee generators. We introduce a new normal form on Bn+, which is based on expressing every braid of Bn+ in terms of a certain finite sequence of braids of Bn1+. We deduce an inductive characterization of the Dehornoy ordering of dual braid monoids, and explicitly compute the associated order types.

Soit Bn+ le monoïde de tresses dual sur n brins, c'est-à-dire le sous-monoïde du groupe de tresses Bn formé par les tresses ayant une expression positive en les générateurs de Birman–Ko–Lee. Nous introduisons une nouvelle forme normale, dite cyclante, sur Bn+. Cette forme normale est basée sur une décomposition de chaque tresse de Bn+ en termes d'une suite de tresses de Bn1+. Nous en déduisons une caractérisation inductive de l'ordre de Dehornoy sur les monoïdes de tresses duaux, et calculons explicitement les types d'ordre associés.

Received:
Accepted:
Published online:
DOI: 10.1016/j.crma.2008.05.001
Fromentin, Jean 1

1 Laboratoire de mathématiques Nicolas-Oresme, UMR 6139 CNRS, Université de Caen BP 5186, 14032 Caen, France
@article{CRMATH_2008__346_13-14_729_0,
     author = {Fromentin, Jean},
     title = {A well-ordering of dual braid monoids},
     journal = {Comptes Rendus. Math\'ematique},
     pages = {729--734},
     publisher = {Elsevier},
     volume = {346},
     number = {13-14},
     year = {2008},
     doi = {10.1016/j.crma.2008.05.001},
     language = {en},
     url = {http://www.numdam.org/articles/10.1016/j.crma.2008.05.001/}
}
TY  - JOUR
AU  - Fromentin, Jean
TI  - A well-ordering of dual braid monoids
JO  - Comptes Rendus. Mathématique
PY  - 2008
SP  - 729
EP  - 734
VL  - 346
IS  - 13-14
PB  - Elsevier
UR  - http://www.numdam.org/articles/10.1016/j.crma.2008.05.001/
DO  - 10.1016/j.crma.2008.05.001
LA  - en
ID  - CRMATH_2008__346_13-14_729_0
ER  - 
%0 Journal Article
%A Fromentin, Jean
%T A well-ordering of dual braid monoids
%J Comptes Rendus. Mathématique
%D 2008
%P 729-734
%V 346
%N 13-14
%I Elsevier
%U http://www.numdam.org/articles/10.1016/j.crma.2008.05.001/
%R 10.1016/j.crma.2008.05.001
%G en
%F CRMATH_2008__346_13-14_729_0
Fromentin, Jean. A well-ordering of dual braid monoids. Comptes Rendus. Mathématique, Volume 346 (2008) no. 13-14, pp. 729-734. doi : 10.1016/j.crma.2008.05.001. http://www.numdam.org/articles/10.1016/j.crma.2008.05.001/

[1] Artin, E. Theory of braids, Ann. of Math., Volume 48 (1947), pp. 101-126

[2] Bessis, D. The dual braid monoid, Ann. Sci. Norm. Sup., Volume 36 (2003), pp. 647-683

[3] Birman, J.; Ko, K.H.; Lee, S.J. A new approach to the word problem in the braid groups, Adv. in Math., Volume 139 (1998), pp. 322-353

[4] Burckel, S. The wellordering on positive braids, J. Pure Appl. Algebra, Volume 120 (1994) no. 1, pp. 1-17

[5] Dehornoy, P. Alternating normal forms for braids and locally Garside monoids | arXiv

[6] Dehornoy, P. Braid groups and left distributive operations, Trans. Amer. Math. Soc., Volume 345 (1994) no. 2, pp. 293-304

[7] P. Dehornoy, I. Dynnikov, D. Rolfsen, B. Wiest, Ordering Braids, Mathematical Surveys and Monographs, Amer. Math. Soc., in press

[8] Garside, F.A. The braid group and other groups, Quart. J. Math. Oxford, Volume 20 (1969), pp. 235-254

[9] Higman, G. Ordering by divisibility in abstract algebras, Proc. London Math. Soc., Volume 2 (1952), pp. 326-336

[10] Laver, R. Braid group actions on left distributive structures and well-orderings in the braid group, J. Pure Appl. Algebra, Volume 108 (1996) no. 1, pp. 81-98

Cited by Sources: