Dynamical Systems
No finite invariant density for Misiurewicz exponential maps
Comptes Rendus. Mathématique, Volume 346 (2008) no. 9-10, pp. 559-562.

For exponential mappings such that the orbit of the only singular value 0 is bounded, it is shown that no integrable density invariant under the dynamics exists on C.

Pour les applications exponentielles de C dont l'orbite de la valeur singulière 0 est bornée, on montre qu'il n'existe aucune densité intégrable et invariante sous la dynamique.

Received:
Accepted:
Published online:
DOI: 10.1016/j.crma.2008.03.013
Kotus, Janina 1; Świa̧tek, Grzegorz 1, 2

1 Faculty of Mathematics and Information Science, Warsaw University of Technology, 00-661 Warsaw, Poland
2 Department of Mathematics, Penn State University, University Park, PA 16802, USA
@article{CRMATH_2008__346_9-10_559_0,
     author = {Kotus, Janina and \'Swia̧tek, Grzegorz},
     title = {No finite invariant density for {Misiurewicz} exponential maps},
     journal = {Comptes Rendus. Math\'ematique},
     pages = {559--562},
     publisher = {Elsevier},
     volume = {346},
     number = {9-10},
     year = {2008},
     doi = {10.1016/j.crma.2008.03.013},
     language = {en},
     url = {http://www.numdam.org/articles/10.1016/j.crma.2008.03.013/}
}
TY  - JOUR
AU  - Kotus, Janina
AU  - Świa̧tek, Grzegorz
TI  - No finite invariant density for Misiurewicz exponential maps
JO  - Comptes Rendus. Mathématique
PY  - 2008
SP  - 559
EP  - 562
VL  - 346
IS  - 9-10
PB  - Elsevier
UR  - http://www.numdam.org/articles/10.1016/j.crma.2008.03.013/
DO  - 10.1016/j.crma.2008.03.013
LA  - en
ID  - CRMATH_2008__346_9-10_559_0
ER  - 
%0 Journal Article
%A Kotus, Janina
%A Świa̧tek, Grzegorz
%T No finite invariant density for Misiurewicz exponential maps
%J Comptes Rendus. Mathématique
%D 2008
%P 559-562
%V 346
%N 9-10
%I Elsevier
%U http://www.numdam.org/articles/10.1016/j.crma.2008.03.013/
%R 10.1016/j.crma.2008.03.013
%G en
%F CRMATH_2008__346_9-10_559_0
Kotus, Janina; Świa̧tek, Grzegorz. No finite invariant density for Misiurewicz exponential maps. Comptes Rendus. Mathématique, Volume 346 (2008) no. 9-10, pp. 559-562. doi : 10.1016/j.crma.2008.03.013. http://www.numdam.org/articles/10.1016/j.crma.2008.03.013/

[1] Bock, H. On the dynamics of entire functions on the Julia set, Result. Math., Volume 30 (1996), pp. 16-20

[2] Dobbs, N.; Skorulski, B. Non-existence of absolutely continuous invariant probabilities for exponential maps, Fund. Math., Volume 198 (2008), pp. 283-287

[3] Erëmenko, A.È.; Lyubich, M. Dynamical properties of some classes of entire functions, Ann. Inst. Fourier (Grenoble), Volume 42 (1992), pp. 989-1020

[4] Graczyk, J.; Kotus, J.; Świa̧tek, G. Non-recurrent meromorphic functions, Fund. Math., Volume 182 (2004), pp. 269-281

[5] Kotus, J.; Urbański, M. Existence of invariant measures for transcendental subexpanding functions, Math. Z., Volume 243 (2003), pp. 25-36

[6] J. Kotus, G. Świa̧tek, Invariant measures for meromorphic Misiurewicz maps, Math. Proc. Cambr. Phil. Soc., in press

Cited by Sources:

The first author is partially supported by a grant Chaos, fraktale i dynamika konforemna – N N201 0222 33. The second author acknowledges sabbatical support from Penn State University.