Partial Differential Equations
Remarks on global approximate controllability for the 2-D Navier–Stokes system with Dirichlet boundary conditions
Comptes Rendus. Mathématique, Volume 343 (2006) no. 9, pp. 573-577.

This Note deals with the two-dimensional Navier–Stokes system. In this context, we prove a result concerning its global approximate controllability by means of boundary controls.

Cette Note concerne le système de Navier–Stokes en dimension 2. Nous montrons un résultat de contrôlabilité approchée globale à l'aide de contrôles frontière.

Received:
Accepted:
Published online:
DOI: 10.1016/j.crma.2006.09.023
Guerrero, Sergio 1; Imanuvilov, Oleg Yurievich 2; Puel, Jean-Pierre 3

1 Laboratoire Jacques-Louis Lions, université Pierre et Marie Curie, boîte corrier, 187, 75035 Paris cedex 05, France
2 Department of Mathematics, Colorado State University, 101 Weber Building, Fort Collins, CO 80523-1874, USA
3 Laboratoire de mathématiques de Versailles, université de Versailles-St-Quentin, 45, avenue des États Unis, 78035 Versailles, France
@article{CRMATH_2006__343_9_573_0,
     author = {Guerrero, Sergio and Imanuvilov, Oleg Yurievich and Puel, Jean-Pierre},
     title = {Remarks on global approximate controllability for the {2-D} {Navier{\textendash}Stokes} system with {Dirichlet} boundary conditions},
     journal = {Comptes Rendus. Math\'ematique},
     pages = {573--577},
     publisher = {Elsevier},
     volume = {343},
     number = {9},
     year = {2006},
     doi = {10.1016/j.crma.2006.09.023},
     language = {en},
     url = {http://www.numdam.org/articles/10.1016/j.crma.2006.09.023/}
}
TY  - JOUR
AU  - Guerrero, Sergio
AU  - Imanuvilov, Oleg Yurievich
AU  - Puel, Jean-Pierre
TI  - Remarks on global approximate controllability for the 2-D Navier–Stokes system with Dirichlet boundary conditions
JO  - Comptes Rendus. Mathématique
PY  - 2006
SP  - 573
EP  - 577
VL  - 343
IS  - 9
PB  - Elsevier
UR  - http://www.numdam.org/articles/10.1016/j.crma.2006.09.023/
DO  - 10.1016/j.crma.2006.09.023
LA  - en
ID  - CRMATH_2006__343_9_573_0
ER  - 
%0 Journal Article
%A Guerrero, Sergio
%A Imanuvilov, Oleg Yurievich
%A Puel, Jean-Pierre
%T Remarks on global approximate controllability for the 2-D Navier–Stokes system with Dirichlet boundary conditions
%J Comptes Rendus. Mathématique
%D 2006
%P 573-577
%V 343
%N 9
%I Elsevier
%U http://www.numdam.org/articles/10.1016/j.crma.2006.09.023/
%R 10.1016/j.crma.2006.09.023
%G en
%F CRMATH_2006__343_9_573_0
Guerrero, Sergio; Imanuvilov, Oleg Yurievich; Puel, Jean-Pierre. Remarks on global approximate controllability for the 2-D Navier–Stokes system with Dirichlet boundary conditions. Comptes Rendus. Mathématique, Volume 343 (2006) no. 9, pp. 573-577. doi : 10.1016/j.crma.2006.09.023. http://www.numdam.org/articles/10.1016/j.crma.2006.09.023/

[1] Coron, J.-M. Global asymptotic stabilization for the controllable systems without drift, Math. Control Signals Systems, Volume 5 (1992) no. 3, pp. 295-312

[2] Coron, J.-M. On the controllability of the 2-D incompressible Navier–Stokes equations with the Navier slip boundary conditions, ESIAN COCV, Volume 1 (1995/96), pp. 35-75

[3] Fabre, C.; Lebeau, G. Régularité et unicité pour le problème de Stokes, Comm. Partial Differential Equations, Volume 27 (2002) no. 3–4, pp. 437-475

[4] E. Fernández-Cara, S. Guerrero, O. Yu. Imanuvilov, J.-P. Puel, Local exact controllability of the Navier–Stokes system, J. Math. Pures Appl. 83 (12) 1501–1542

[5] Imanuvilov, O.Yu. Boundary controllability of parabolic equations, Sb. Math., Volume 186 (1995), pp. 879-900

[6] Giga, Y.; Sohr, H. Abstract Lp estimates for the Cauchy problem with applications to the Navier–Stokes equations in exterior domains, J. Funct. Anal., Volume 102 (1991), pp. 72-94

[7] S. Guerrero, O. Yu. Imanuvilov, J.-P. Puel, Global approximate controllability of the 2-D Navier–Stokes equations with Dirichlet boundary conditions, Preprint, 2006

Cited by Sources: