Partial Differential Equations
On the global attraction to solitary waves for the Klein–Gordon equation coupled to a nonlinear oscillator
[Attraction globale vers des ondes solitaires pour l'équation de Klein–Gordon couplé à un oscillateur non linéaire]
Comptes Rendus. Mathématique, Tome 343 (2006) no. 2, pp. 111-114.

On s'intéresse aux solutions d'énergie finie d'une équation non linéaire de Klein–Gordon U(1)-invariante monodimensionnelle, avec une non linéarité ponctuelle, et on analyse leur comportement asymptotique aux temps longs. Le principal résultat que nous avons obtenu est que toute solution d'énergie finie converge pour t± vers un ensemble de « fonctions propres non linéaires » ψ(x)eiωt.

The long-time asymptotics are analyzed for all finite energy solutions to a model U(1)-invariant nonlinear Klein–Gordon equation in one dimension, with the nonlinearity concentrated at a point. Our main result is that each finite energy solution converges as t± to the set of ‘nonlinear eigenfunctions’ ψ(x)eiωt.

Reçu le :
Accepté le :
Publié le :
DOI : 10.1016/j.crma.2006.06.009
Komech, Alexander I. 1 ; Komech, Andrew A. 2

1 Faculty of Mathematics, Vienna University, A-1090 Vienna, Austria
2 Mathematics Department, Texas A&M University, College Station, TX, USA
@article{CRMATH_2006__343_2_111_0,
     author = {Komech, Alexander I. and Komech, Andrew A.},
     title = {On the global attraction to solitary waves for the {Klein{\textendash}Gordon} equation coupled to a nonlinear oscillator},
     journal = {Comptes Rendus. Math\'ematique},
     pages = {111--114},
     publisher = {Elsevier},
     volume = {343},
     number = {2},
     year = {2006},
     doi = {10.1016/j.crma.2006.06.009},
     language = {en},
     url = {http://www.numdam.org/articles/10.1016/j.crma.2006.06.009/}
}
TY  - JOUR
AU  - Komech, Alexander I.
AU  - Komech, Andrew A.
TI  - On the global attraction to solitary waves for the Klein–Gordon equation coupled to a nonlinear oscillator
JO  - Comptes Rendus. Mathématique
PY  - 2006
SP  - 111
EP  - 114
VL  - 343
IS  - 2
PB  - Elsevier
UR  - http://www.numdam.org/articles/10.1016/j.crma.2006.06.009/
DO  - 10.1016/j.crma.2006.06.009
LA  - en
ID  - CRMATH_2006__343_2_111_0
ER  - 
%0 Journal Article
%A Komech, Alexander I.
%A Komech, Andrew A.
%T On the global attraction to solitary waves for the Klein–Gordon equation coupled to a nonlinear oscillator
%J Comptes Rendus. Mathématique
%D 2006
%P 111-114
%V 343
%N 2
%I Elsevier
%U http://www.numdam.org/articles/10.1016/j.crma.2006.06.009/
%R 10.1016/j.crma.2006.06.009
%G en
%F CRMATH_2006__343_2_111_0
Komech, Alexander I.; Komech, Andrew A. On the global attraction to solitary waves for the Klein–Gordon equation coupled to a nonlinear oscillator. Comptes Rendus. Mathématique, Tome 343 (2006) no. 2, pp. 111-114. doi : 10.1016/j.crma.2006.06.009. http://www.numdam.org/articles/10.1016/j.crma.2006.06.009/

[1] Babin, A.V.; Vishik, M.I. Attractors of Evolution Equations, Studies in Mathematics and its Applications, vol. 25, North-Holland Publishing Co., Amsterdam, 1992

[2] Buslaev, V.S.; Perel'man, G.S. Scattering for the nonlinear Schrödinger equation: states that are close to a soliton, Algebra i Analiz, Volume 4 (1992) no. 6, pp. 63-102

[3] Cuccagna, S. Stabilization of solutions to nonlinear Schrödinger equations, Comm. Pure Appl. Math., Volume 54 (2001) no. 9, pp. 1110-1145

[4] Ginibre, J.; Velo, G. Time decay of finite energy solutions of the nonlinear Klein–Gordon and Schrödinger equations, Ann. Inst. H. Poincaré Phys. Théor., Volume 43 (1985) no. 4, pp. 399-442

[5] Hörmander, L. The Analysis of Linear Partial Differential Operators. I, Springer-Verlag, Berlin, 1990 (Springer Study Edition)

[6] Klainerman, S. Long-time behavior of solutions to nonlinear evolution equations, Arch. Rational Mech. Anal., Volume 78 (1982) no. 1, pp. 73-98

[7] Komech, A.I. Stabilization of the interaction of a string with a nonlinear oscillator, Moscow Univ. Math. Bull., Volume 46 (1991) no. 6, pp. 34-39

[8] Komech, A. On transitions to stationary states in one-dimensional nonlinear wave equations, Arch. Rational Mech. Anal., Volume 149 (1999) no. 3, pp. 213-228

[9] Komech, A.; Spohn, H. Long-time asymptotics for the coupled Maxwell–Lorentz equations, Comm. Partial Differential Equations, Volume 25 (2000) no. 3–4, pp. 559-584

[10] Komech, A.; Spohn, H.; Kunze, M. Long-time asymptotics for a classical particle interacting with a scalar wave field, Comm. Partial Differential Equations, Volume 22 (1997) no. 1–2, pp. 307-335

[11] Morawetz, C.S.; Strauss, W.A. Decay and scattering of solutions of a nonlinear relativistic wave equation, Comm. Pure Appl. Math., Volume 25 (1972), pp. 1-31

[12] Soffer, A.; Weinstein, M.I. Multichannel nonlinear scattering for nonintegrable equations, Comm. Math. Phys., Volume 133 (1990) no. 1, pp. 119-146

[13] Soffer, A.; Weinstein, M.I. Resonances, radiation damping and instability in Hamiltonian nonlinear wave equations, Invent. Math., Volume 136 (1999) no. 1, pp. 9-74

[14] Strauss, W.A. Decay and asymptotics for u=f(u), J. Funct. Anal., Volume 2 (1968), pp. 409-457

[15] Temam, R. Infinite-Dimensional Dynamical Systems in Mechanics and Physics, Applied Mathematical Sciences, vol. 68, Springer-Verlag, New York, 1997

[16] Titchmarsh, E. The zeros of certain integral functions, Proc. London Math. Soc., Volume 25 (1926), pp. 283-302

Cité par Sources :