Algebra/Homological Algebra
On the Hochschild homology of quantum SL(N)
[Sur l'homologie de Hochschild de quantum SL(N)]
Comptes Rendus. Mathématique, Tome 343 (2006) no. 1, pp. 9-13.

Nous démontrons que l'anneau standard quantique des coordonnées A:=kq[SL(N)] satisfait l'analogue de van den Bergh de la dualité de Poincaré dans l'(co)homologie de Hochschild. Le bimodule de la dualité est Aσ, le A-bimodule qui est A comme un espace vectoriel, avec la multiplication à droite tordue par l'automorphisme modulaire σ de la fonctionnelle de Haar. Ceci implique HN21(A,Aσ)k, et généralise notre résultat précédent pour kq[SL(2)].

We show that the quantized coordinate ring A:=kq[SL(N)] satisfies van den Bergh's analogue of Poincaré duality for Hochschild (co)homology with dualizing bimodule being Aσ, the A-bimodule which is A as k-vector space with right multiplication twisted by the modular automorphism σ of the Haar functional. This implies that HN21(A,Aσ)k, generalizing our previous result for kq[SL(2)].

Reçu le :
Accepté le :
Publié le :
DOI : 10.1016/j.crma.2006.03.031
Hadfield, Tom 1 ; Krähmer, Ulrich 2

1 School of Mathematical Sciences, Queen Mary, University of London, 327 Mile End Road, London E1 4NS, UK
2 Instytut Matematyczny Polskiej Akademii Nauk, Ul. Sniadeckich 8, 00956 Warszawa, Poland
@article{CRMATH_2006__343_1_9_0,
     author = {Hadfield, Tom and Kr\"ahmer, Ulrich},
     title = {On the {Hochschild} homology of quantum $ \mathit{SL}(N)$},
     journal = {Comptes Rendus. Math\'ematique},
     pages = {9--13},
     publisher = {Elsevier},
     volume = {343},
     number = {1},
     year = {2006},
     doi = {10.1016/j.crma.2006.03.031},
     language = {en},
     url = {http://www.numdam.org/articles/10.1016/j.crma.2006.03.031/}
}
TY  - JOUR
AU  - Hadfield, Tom
AU  - Krähmer, Ulrich
TI  - On the Hochschild homology of quantum $ \mathit{SL}(N)$
JO  - Comptes Rendus. Mathématique
PY  - 2006
SP  - 9
EP  - 13
VL  - 343
IS  - 1
PB  - Elsevier
UR  - http://www.numdam.org/articles/10.1016/j.crma.2006.03.031/
DO  - 10.1016/j.crma.2006.03.031
LA  - en
ID  - CRMATH_2006__343_1_9_0
ER  - 
%0 Journal Article
%A Hadfield, Tom
%A Krähmer, Ulrich
%T On the Hochschild homology of quantum $ \mathit{SL}(N)$
%J Comptes Rendus. Mathématique
%D 2006
%P 9-13
%V 343
%N 1
%I Elsevier
%U http://www.numdam.org/articles/10.1016/j.crma.2006.03.031/
%R 10.1016/j.crma.2006.03.031
%G en
%F CRMATH_2006__343_1_9_0
Hadfield, Tom; Krähmer, Ulrich. On the Hochschild homology of quantum $ \mathit{SL}(N)$. Comptes Rendus. Mathématique, Tome 343 (2006) no. 1, pp. 9-13. doi : 10.1016/j.crma.2006.03.031. http://www.numdam.org/articles/10.1016/j.crma.2006.03.031/

[1] Bourbaki, N. Elementy matematiki. Algebra. Glava X. Gomologicheskaya algebra, Nauka, Moscow, 1987 (in Russian)

[2] Brown, K.A.; Zhang, J.J. Dualising complexes and twisted Hochschild (co)homology for noetherian Hopf algebras, 2006 | arXiv

[3] Cartan, H.; Eilenberg, S. Homological Algebra, Princeton University Press, 1956

[4] Connes, A. Noncommutative differential geometry, Inst. Hautes Études Sci. Publ. Math., Volume 62 (1985), pp. 257-360

[5] Farinati, M. Hochschild duality, localization, and smash products, J. Algebra, Volume 284 (2005) no. 1, pp. 415-434

[6] Feng, P.; Tsygan, B. Hochschild and cyclic homology of quantum groups, Comm. Math. Phys., Volume 140 (1991) no. 3, pp. 481-521

[7] Fröberg, R. Koszul algebras, Lecture Notes in Pure and Appl. Math., vol. 205, Dekker, 1999, pp. 337-350

[8] Goodearl, K.R.; Zhang, J.J. Homological properties of quantized coordinate rings of semisimple groups, 2005 | arXiv

[9] T. Hadfield, Twisted cyclic homology of all Podleś quantum spheres, J. Geom. Physics (2006), in press

[10] Hadfield, T.; Krähmer, U. Twisted homology of quantum SL(2), K-Theory, Volume 34 (2005) no. 4, pp. 327-360

[11] Hochschild, G.; Kostant, B.; Rosenberg, A. Differential forms on regular affine algebras, Trans. Amer. Math. Soc., Volume 102 (1962)

[12] Joseph, A. Quantum Groups and their Primitive Ideals, Springer-Verlag, Berlin, 1995

[13] Klimyk, A.; Schmüdgen, K. Quantum Groups and their Representations, Springer, 1997

[14] Kustermans, J.; Murphy, G.; Tuset, L. Differential calculi over quantum groups and twisted cyclic cocycles, J. Geom. Phys., Volume 44 (2003) no. 4, pp. 570-594

[15] Levasseur, T.; Stafford, J.T. The quantum coordinate ring of the special linear group, J. Pure Appl. Algebra, Volume 86 (1993), pp. 181-186

[16] Manin, Yu.I. Some remarks on Koszul algebras and quantum groups, Ann. Inst. Fourier, Volume 37 (1987) no. 4, pp. 191-205

[17] Priddy, B. Koszul resolutions, Trans. Amer. Math. Soc., Volume 152 (1970), pp. 39-60

[18] Sitarz, A. Twisted Hochschild homology of quantum hyperplanes, K-Theory (2005)

[19] van den Bergh, M. A relation between Hochschild homology and cohomology for Gorenstein rings, Proc. Amer. Math. Soc., Volume 126 (1998) no. 5, pp. 1345-1348 Erratum Proc. Amer. Math. Soc., 130, 9, 2002, pp. 2809-2810 (electronic)

Cité par Sources :