Partial Differential Equations
Two new discrete inequalities of Poincaré–Friedrichs on discontinuous spaces for Maxwell's equations
Comptes Rendus. Mathématique, Volume 342 (2006) no. 1, pp. 29-32.

We present two new discrete inequalities of Poincaré–Friedrichs on discontinuous spaces for Maxwell's equations. The proofs of the inequalities are based on some decompositions formulas of L2(Ω)3.

On présente deux nouvelles inégalités de type Poincaré–Friedrichs sur les espaces discontinus. La preuve des inégalités est basée sur des formules de décomposition orthogonale de L2(Ω)3.

Received:
Accepted:
Published online:
DOI: 10.1016/j.crma.2005.10.026
Zaghdani, Abdelhamid 1; Daveau, Christian 1

1 Univeristé Paris-Sud, laboratoire AN-EDP, département de mathématiques, UMR 8628, bâtiment 425, 91405 Orsay cedex, France
@article{CRMATH_2006__342_1_29_0,
     author = {Zaghdani, Abdelhamid and Daveau, Christian},
     title = {Two new discrete inequalities of {Poincar\'e{\textendash}Friedrichs} on discontinuous spaces for {Maxwell's} equations},
     journal = {Comptes Rendus. Math\'ematique},
     pages = {29--32},
     publisher = {Elsevier},
     volume = {342},
     number = {1},
     year = {2006},
     doi = {10.1016/j.crma.2005.10.026},
     language = {en},
     url = {http://www.numdam.org/articles/10.1016/j.crma.2005.10.026/}
}
TY  - JOUR
AU  - Zaghdani, Abdelhamid
AU  - Daveau, Christian
TI  - Two new discrete inequalities of Poincaré–Friedrichs on discontinuous spaces for Maxwell's equations
JO  - Comptes Rendus. Mathématique
PY  - 2006
SP  - 29
EP  - 32
VL  - 342
IS  - 1
PB  - Elsevier
UR  - http://www.numdam.org/articles/10.1016/j.crma.2005.10.026/
DO  - 10.1016/j.crma.2005.10.026
LA  - en
ID  - CRMATH_2006__342_1_29_0
ER  - 
%0 Journal Article
%A Zaghdani, Abdelhamid
%A Daveau, Christian
%T Two new discrete inequalities of Poincaré–Friedrichs on discontinuous spaces for Maxwell's equations
%J Comptes Rendus. Mathématique
%D 2006
%P 29-32
%V 342
%N 1
%I Elsevier
%U http://www.numdam.org/articles/10.1016/j.crma.2005.10.026/
%R 10.1016/j.crma.2005.10.026
%G en
%F CRMATH_2006__342_1_29_0
Zaghdani, Abdelhamid; Daveau, Christian. Two new discrete inequalities of Poincaré–Friedrichs on discontinuous spaces for Maxwell's equations. Comptes Rendus. Mathématique, Volume 342 (2006) no. 1, pp. 29-32. doi : 10.1016/j.crma.2005.10.026. http://www.numdam.org/articles/10.1016/j.crma.2005.10.026/

[1] Girault, V.; Raviart, P.A. Finite Element Methods for Navier–Stokes Equations, Springer-Verlag, Berlin, 1986

[2] Kikuchi, F. Mixed formulations for finite element analysis of magnetostatic and electrostatic problems, Japan J. Appl. Math, Volume 6 (1989), pp. 209-221

[3] Lions, J.L.; Magenes, E. Problèmes aux limites non homogènes et applications, Dunot, Paris, 1968

[4] S. Prudhomme, F. Pascal, J.T. Oden, A. Romkes, Review of a priori estimation for discontinuous Galerkin method, Tech. report 2000-27, TICAM, University of Texas at Austin, 2000

Cited by Sources: