Probability Theory/Mathematical Physics
A (one-dimensional) free Brunn–Minkowski inequality
[Une inégalité (uni-dimensionnelle) de Brunn–Minkowski libre]
Comptes Rendus. Mathématique, Tome 340 (2005) no. 4, pp. 301-304.

Nous présentons une version uni-dimensionnelle de la forme fonctionnelle de l'inégalité géométrique de Brunn–Minkowski en théorie des probabilités libres. L'argument s'appuie sur l'approximation matricielle déjà mise en œuvre récemment par Biane et Hiai et al. pour établir les analogues libres des inégalités de Sobolev logarithmique et de coût du transport pour des potentiels strictement convexes, qui sont ici déduits de l'inégalité de Brunn–Minkowski comme dans le cas classique. La méthode permet, de la même façon, d'étendre au cadre libre le théorème d'Otto–Villani assurant que l'inégalité de Sobolev logarithmique entraîne l'inégalité de transport.

We present a one-dimensional version of the functional form of the geometric Brunn–Minkowski inequality in free (non-commutative) probability theory. The proof relies on matrix approximation as used recently by Biane and Hiai et al. to establish free analogues of the logarithmic Sobolev and transportation cost inequalities for strictly convex potentials, that are recovered here from the Brunn–Minkowski inequality as in the classical case. The method is used to extend to the free setting the Otto–Villani theorem stating that the logarithmic Sobolev inequality implies the transportation cost inequality.

Reçu le :
Accepté le :
Publié le :
DOI : 10.1016/j.crma.2004.12.017
Ledoux, Michel 1

1 Institut de mathématiques, université Paul-Sabatier, 31062 Toulouse, France
@article{CRMATH_2005__340_4_301_0,
     author = {Ledoux, Michel},
     title = {A (one-dimensional) free {Brunn{\textendash}Minkowski} inequality},
     journal = {Comptes Rendus. Math\'ematique},
     pages = {301--304},
     publisher = {Elsevier},
     volume = {340},
     number = {4},
     year = {2005},
     doi = {10.1016/j.crma.2004.12.017},
     language = {en},
     url = {http://www.numdam.org/articles/10.1016/j.crma.2004.12.017/}
}
TY  - JOUR
AU  - Ledoux, Michel
TI  - A (one-dimensional) free Brunn–Minkowski inequality
JO  - Comptes Rendus. Mathématique
PY  - 2005
SP  - 301
EP  - 304
VL  - 340
IS  - 4
PB  - Elsevier
UR  - http://www.numdam.org/articles/10.1016/j.crma.2004.12.017/
DO  - 10.1016/j.crma.2004.12.017
LA  - en
ID  - CRMATH_2005__340_4_301_0
ER  - 
%0 Journal Article
%A Ledoux, Michel
%T A (one-dimensional) free Brunn–Minkowski inequality
%J Comptes Rendus. Mathématique
%D 2005
%P 301-304
%V 340
%N 4
%I Elsevier
%U http://www.numdam.org/articles/10.1016/j.crma.2004.12.017/
%R 10.1016/j.crma.2004.12.017
%G en
%F CRMATH_2005__340_4_301_0
Ledoux, Michel. A (one-dimensional) free Brunn–Minkowski inequality. Comptes Rendus. Mathématique, Tome 340 (2005) no. 4, pp. 301-304. doi : 10.1016/j.crma.2004.12.017. http://www.numdam.org/articles/10.1016/j.crma.2004.12.017/

[1] Ben Arous, G.; Guionnet, A. Large deviations for Wigner's law and Voiculescu's noncommutative entropy, Probab. Theory Related Fields, Volume 108 (1997), pp. 517-542

[2] Biane, P. Logarithmic Sobolev inequalities, matrix models and free entropy, Acta Math. Sinica, Volume 19 (2003), pp. 1-11

[3] Biane, P.; Speicher, R. Free diffusions, free entropy and free Fisher information, Ann. Inst. H. Poincaré, Volume 37 (2001), pp. 581-606

[4] Biane, P.; Voiculescu, D. A free probability analogue of the Wasserstein distance on the trace-state space, Geom. Funct. Anal., Volume 11 (2001), pp. 1125-1138

[5] Bobkov, S.; Gentil, I.; Ledoux, M. Hypercontractivity of Hamilton–Jacobi equations, J. Math. Pures Appl., Volume 80 (2001), pp. 669-696

[6] Hiai, F.; Petz, D. The Semicircle Law, Free Random Variables and Entropy, Math. Surveys and Monographs, vol. 77, American Mathematical Society, 2000

[7] F. Hiai, D. Petz, Y. Ueda, Inequalities related to free entropy derived from random matrix approximation (2003)

[8] Hiai, F.; Petz, D.; Ueda, Y. Free transportation cost inequalities via random matrix approximation, Probab. Theory Related Fields, Volume 130 (2004), pp. 199-221

[9] Johansson, K. On fluctuations of eigenvalues of random Hermitian matrices, Duke Math. J., Volume 91 (1998), pp. 151-204

[10] Ledoux, M. The Concentration of Measure Phenomenon, Math. Surveys and Monographs, vol. 89, American Mathematical Society, 2001

[11] M. Ledoux, Measure concentration, transportation cost, and functional inequalities, Summer School on Singular Phenomena and Scaling in Mathematical Models, Bonn, 2003

[12] Otto, F.; Villani, C. Generalization of an inequality by Talagrand, and links with the logarithmic Sobolev inequality, J. Funct. Anal., Volume 173 (2000), pp. 361-400

[13] Saff, E.B.; Totik, V. Logarithmic Potentials with External Fields, Grundlehren Math. Wiss., vol. 316, Springer, 1997

[14] Szarek, S.; Voiculescu, D. Volumes of restricted Minkowski sums and the free analogue of the entropy power inequality, Commun. Math. Phys., Volume 178 (1996), pp. 563-570

[15] Villani, C. Topics in Optimal Transportation, Grad. Stud. Math., vol. 58, American Mathematical Society, 2003

[16] Voiculescu, D. The analogues of entropy and of Fisher's information measure in free probability theory, I, Commun. Math. Phys., Volume 155 (1993), pp. 71-92

[17] Voiculescu, D. The analogues of entropy and of Fisher's information measure in free probability theory, V. Noncommutative Hilbert transforms, Invent. Math., Volume 132 (1998), pp. 189-227

Cité par Sources :