Differential Topology
Isotropic nonarchimedean S-arithmetic groups are not left orderable
[Les groupes S-arithmétiques non-archimédiens isotropes ne sont pas ordonnables à gauche.]
Comptes Rendus. Mathématique, Tome 339 (2004) no. 6, pp. 417-420.

Si OS est l'anneau des S-entiers d'un corps de nombres F, et OS a une infinité d'unités, nous prouvons qu'aucun sous-groupe d'indice fini de SL(2,OS) n'est ordonnable à gauche. (En d'autres termes, les sous-groupes d'indice fini de SL(2,OS) ne possèdent pas d'action non triviale sur la droite réelle respectant l'orientation.) Cela implique que si G est un groupe algébrique F-simple isotrope, défini sur un corps de nombres F, alors aucun sous-groupe S-arithmétique non-archimédien de G n'est ordonnable à gauche. La démonstration est fondée sur le fait, dû à D. Carter, G. Keller, et E. Paige, que chaque élément de SL(2,OS) est le produit d'un nombre borné de matrices élémentaires.

If OS is the ring of S-integers of an algebraic number field F, and OS has infinitely many units, we show that no finite-index subgroup of SL(2,OS) is left orderable. (Equivalently, these subgroups have no nontrivial orientation-preserving actions on the real line.) This implies that if G is an isotropic F-simple algebraic group over an algebraic number field F, then no nonarchimedean S-arithmetic subgroup of G is left orderable. Our proofs are based on the fact, proved by D. Carter, G. Keller, and E. Paige, that every element of SL(2,OS) is a product of a bounded number of elementary matrices.

Reçu le :
Accepté le :
Publié le :
DOI : 10.1016/j.crma.2004.07.015
Lifschitz, Lucy 1 ; Morris, Dave Witte 2, 3

1 Department of Mathematics, University of Oklahoma, Norman, OK 73019, USA
2 Department of Mathematics and Computer Science, University of Lethbridge, Lethbridge, Alberta T1K 3M4, Canada
3 Department of Mathematics, Oklahoma State University, Stillwater, OK 74078, USA
@article{CRMATH_2004__339_6_417_0,
     author = {Lifschitz, Lucy and Morris, Dave Witte},
     title = {Isotropic nonarchimedean {\protect\emph{S}-arithmetic} groups are not left orderable},
     journal = {Comptes Rendus. Math\'ematique},
     pages = {417--420},
     publisher = {Elsevier},
     volume = {339},
     number = {6},
     year = {2004},
     doi = {10.1016/j.crma.2004.07.015},
     language = {en},
     url = {http://www.numdam.org/articles/10.1016/j.crma.2004.07.015/}
}
TY  - JOUR
AU  - Lifschitz, Lucy
AU  - Morris, Dave Witte
TI  - Isotropic nonarchimedean S-arithmetic groups are not left orderable
JO  - Comptes Rendus. Mathématique
PY  - 2004
SP  - 417
EP  - 420
VL  - 339
IS  - 6
PB  - Elsevier
UR  - http://www.numdam.org/articles/10.1016/j.crma.2004.07.015/
DO  - 10.1016/j.crma.2004.07.015
LA  - en
ID  - CRMATH_2004__339_6_417_0
ER  - 
%0 Journal Article
%A Lifschitz, Lucy
%A Morris, Dave Witte
%T Isotropic nonarchimedean S-arithmetic groups are not left orderable
%J Comptes Rendus. Mathématique
%D 2004
%P 417-420
%V 339
%N 6
%I Elsevier
%U http://www.numdam.org/articles/10.1016/j.crma.2004.07.015/
%R 10.1016/j.crma.2004.07.015
%G en
%F CRMATH_2004__339_6_417_0
Lifschitz, Lucy; Morris, Dave Witte. Isotropic nonarchimedean S-arithmetic groups are not left orderable. Comptes Rendus. Mathématique, Tome 339 (2004) no. 6, pp. 417-420. doi : 10.1016/j.crma.2004.07.015. http://www.numdam.org/articles/10.1016/j.crma.2004.07.015/

[1] D. Carter, G. Keller, E. Paige, Bounded expressions in SL(n,A), preprint

[2] Cooke, G.; Weinberger, P.J. On the construction of division chains in algebraic number rings, with applications to SL2, Commun. Algebra, Volume 3 (1975), pp. 481-524

[3] Da̧bkowski, M.K.; Przytycki, J.H.; Togha, A.A. Non-left-orderable 3-manifold groups (preprint) | arXiv

[4] Ghys, É. Actions de réseaux sur le cercle, Invent. Math., Volume 137 (1999) no. 1, pp. 199-231

[5] Ghys, É. Groups acting on the circle, Ens. Math., Volume 47 (2001) no. 3/4, pp. 329-407

[6] Liehl, B. Beschränkte Wortlänge in SL2, Math. Z., Volume 186 (1984) no. 4, pp. 509-524

[7] Murty, V.K. Bounded and finite generation of arithmetic groups (Dilcher, K., ed.), Number Theory, Halifax, NS, CMS Conf. Proc., vol. 15, Amer. Math. Soc., Providence, RI, 1994, pp. 249-261

[8] Raghunathan, M.S. On the congruence subgroup problem, II, Invent. Math., Volume 85 (1986), pp. 73-117

[9] Witte, D. Arithmetic groups of higher Q-rank cannot act on 1-manifolds, P. Am. Math. Soc., Volume 122 (1994) no. 2, pp. 333-340

Cité par Sources :