Mathematical Analysis
Invertible extensions and growth conditions
Comptes Rendus. Mathématique, Volume 339 (2004) no. 1, pp. 21-26.

We study invertible extensions of Banach and Hilbert space bounded linear operators with prescribed growth conditions for the norm of inverses. In particular, the solutions of some open problems are obtained.

Nous étudions les extensions inversibles des opérateurs linéaires et bornés sur un espace de Banach ou de Hilbert avec des conditions de croissance données pour les normes des inverses. Nous obtenons en particulier la réponse à plusieurs problèmes ouverts formulés dans la literature.

Received:
Accepted:
Published online:
DOI: 10.1016/j.crma.2004.04.011
Badea, Catalin 1; Müller, Vladimir 2

1 Département de mathématiques, UMR CNRS no. 8524, université Lille I, 59655 Villeneuve d'Ascq, France
2 Institute of Mathematics AV CR, Zitna 25, 115 67 Prague 1, Czech Republic
@article{CRMATH_2004__339_1_21_0,
     author = {Badea, Catalin and M\"uller, Vladimir},
     title = {Invertible extensions and growth conditions},
     journal = {Comptes Rendus. Math\'ematique},
     pages = {21--26},
     publisher = {Elsevier},
     volume = {339},
     number = {1},
     year = {2004},
     doi = {10.1016/j.crma.2004.04.011},
     language = {en},
     url = {http://www.numdam.org/articles/10.1016/j.crma.2004.04.011/}
}
TY  - JOUR
AU  - Badea, Catalin
AU  - Müller, Vladimir
TI  - Invertible extensions and growth conditions
JO  - Comptes Rendus. Mathématique
PY  - 2004
SP  - 21
EP  - 26
VL  - 339
IS  - 1
PB  - Elsevier
UR  - http://www.numdam.org/articles/10.1016/j.crma.2004.04.011/
DO  - 10.1016/j.crma.2004.04.011
LA  - en
ID  - CRMATH_2004__339_1_21_0
ER  - 
%0 Journal Article
%A Badea, Catalin
%A Müller, Vladimir
%T Invertible extensions and growth conditions
%J Comptes Rendus. Mathématique
%D 2004
%P 21-26
%V 339
%N 1
%I Elsevier
%U http://www.numdam.org/articles/10.1016/j.crma.2004.04.011/
%R 10.1016/j.crma.2004.04.011
%G en
%F CRMATH_2004__339_1_21_0
Badea, Catalin; Müller, Vladimir. Invertible extensions and growth conditions. Comptes Rendus. Mathématique, Volume 339 (2004) no. 1, pp. 21-26. doi : 10.1016/j.crma.2004.04.011. http://www.numdam.org/articles/10.1016/j.crma.2004.04.011/

[1] Arens, R. Inverse-producing extensions of normed algebras, Trans. Amer. Math. Soc., Volume 88 (1958), pp. 536-548

[2] Badea, C. Perturbations of operators similar to contractions and the commutator equation, Studia Math., Volume 150 (2002), pp. 273-293

[3] C. Badea, V. Müller, Growth conditions and inverse producing extensions, Preprint

[4] Colojoară, I.; Foiaş, C. Theory of Generalized Spectral Operators, Math. Appl., vol. 9, Gordon and Breach, New York, 1968

[5] Didas, M. (𝕋 n )-subscalar n-tuples and the Cesaro operator on Hp, Ann. Univ. Sarav. Ser. Math., Volume 10 (2000) no. 2, p. i-iii (and 284–335)

[6] Douglas, R.G. On extending commutative semigroups of isometries, Bull. London Math. Soc., Volume 1 (1969), pp. 157-159

[7] Eschmeier, J.; Putinar, M. Spectral Decompositions and Analytic Sheaves, London Math. Soc. Monographs (N.S.), vol. 10, The Clarendon Press, Oxford University Press, New York, 1996

[8] Esterle, J. Uniqueness, strong forms of uniqueness and negative powers of contractions, (Warsaw, 1992) (Banach Center Publ.), Volume vol. 30, Polish Acad. Science, Warsaw (1994), pp. 127-145

[9] Gindler, H.A.; Taylor, A.E. The minimum modulus of a linear operator and its use in spectral theory, Studia Math., Volume 22 (1962/1963), pp. 15-41

[10] Herz, C. The theory of p-spaces with an application to convolution operators, Trans. Amer. Math. Soc., Volume 154 (1971), pp. 69-82

[11] Kellay, K. Contractions et hyperdistributions à spectre de Carleson, J. London Math. Soc. (2), Volume 58 (1998), pp. 185-196

[12] Kwapień, S. On operators factorizable through Lp space, (Univ. de Bordeaux, 1971) (Mém. Soc. Math. France), Volume vol. 31–32, Soc. Math. France, Paris (1972), pp. 215-225

[13] Laursen, K.B.; Neumann, M.M. An Introduction to Local Spectral Theory, London Math. Soc. Monographs (N.S.), vol. 20, The Clarendon Press, Oxford University Press, New York, 2000

[14] Miller, T.L.; Miller, V.G.; Neumann, M.M. Growth conditions and decomposable extensions, (Memphis, TN, 2001) (Contemp. Math.), Volume vol. 321, American Mathematical Society, Providence, RI (2003), pp. 197-205

[15] Miller, T.L.; Miller, V.; Neumann, M.M. Spectral subspaces of subscalar and related operators, Proc. Amer. Math. Soc., Volume 132 (2004), pp. 1483-1493

[16] T.L. Miller, V. Miller, M.M. Neumann, Local spectral properties of weighted shifts, J. Operator Theory, in press

[17] Miller, T.L.; Miller, V.G.; Neumann, M.M. Localization in the spectral theory of operators on Banach spaces, (Edwardsville, IL, 2002) (Contemp. Math.), Volume vol. 328, American Mathematical Society, Providence, RI (2003), pp. 247-262

[18] Müller, V. Adjoining inverses to noncommutative Banach algebras and extensions of operators, Studia Math., Volume 91 (1988), pp. 73-77

[19] Read, C.J. Spectrum reducing extension for one operator on a Banach space, Trans. Amer. Math. Soc., Volume 308 (1988), pp. 413-429

[20] Read, C.J. Extending an operator from a Hilbert space to a larger Hilbert space, so as to reduce its spectrum, Israel J. Math., Volume 57 (1987), pp. 375-380

[21] Sz.-Nagy, B.; Foiaş, C. Harmonic Analysis of Operators on Hilbert Space, North-Holland, Amsterdam, 1970 (Translated from the French and revised)

[22] Zarrabi, M. Contractions à spectre dénombrable et propriétés d'unicité des fermés dénombrables du cercle, Ann. Inst. Fourier (Grenoble), Volume 43 (1993), pp. 251-263

Cited by Sources: