Harmonic Analysis/Group Theory
Explicit Plancherel formula for the p-adic group GL(n)
Comptes Rendus. Mathématique, Volume 338 (2004) no. 11, pp. 843-848.

We provide an explicit Plancherel formula for the p-adic group GL(n). We determine explicitly the Bernstein decomposition of Plancherel measure, including all numerical constants. We also prove a transfer-of-measure formula for GL(n).

Nous obtenons une formule de Plancherel explicite pour le groupe p-adique GL(n). Nous déterminons explicitement la décomposition de Bernstein de la mesure de Plancherel, y compris les diverses constantes numériques. Nous prouvons aussi une formule de transfert pour GL(n).

Received:
Accepted:
Published online:
DOI: 10.1016/j.crma.2004.03.026
Aubert, Anne-Marie 1; Plymen, Roger 2

1 Institut de mathématiques de Jussieu, 175, rue du Chevaleret, 75013 Paris, France
2 Department of Mathematics, University of Manchester, Manchester M13 9PL, UK
@article{CRMATH_2004__338_11_843_0,
     author = {Aubert, Anne-Marie and Plymen, Roger},
     title = {Explicit {Plancherel} formula for the \protect\emph{p}-adic group {GL(\protect\emph{n})}},
     journal = {Comptes Rendus. Math\'ematique},
     pages = {843--848},
     publisher = {Elsevier},
     volume = {338},
     number = {11},
     year = {2004},
     doi = {10.1016/j.crma.2004.03.026},
     language = {en},
     url = {http://www.numdam.org/articles/10.1016/j.crma.2004.03.026/}
}
TY  - JOUR
AU  - Aubert, Anne-Marie
AU  - Plymen, Roger
TI  - Explicit Plancherel formula for the p-adic group GL(n)
JO  - Comptes Rendus. Mathématique
PY  - 2004
SP  - 843
EP  - 848
VL  - 338
IS  - 11
PB  - Elsevier
UR  - http://www.numdam.org/articles/10.1016/j.crma.2004.03.026/
DO  - 10.1016/j.crma.2004.03.026
LA  - en
ID  - CRMATH_2004__338_11_843_0
ER  - 
%0 Journal Article
%A Aubert, Anne-Marie
%A Plymen, Roger
%T Explicit Plancherel formula for the p-adic group GL(n)
%J Comptes Rendus. Mathématique
%D 2004
%P 843-848
%V 338
%N 11
%I Elsevier
%U http://www.numdam.org/articles/10.1016/j.crma.2004.03.026/
%R 10.1016/j.crma.2004.03.026
%G en
%F CRMATH_2004__338_11_843_0
Aubert, Anne-Marie; Plymen, Roger. Explicit Plancherel formula for the p-adic group GL(n). Comptes Rendus. Mathématique, Volume 338 (2004) no. 11, pp. 843-848. doi : 10.1016/j.crma.2004.03.026. http://www.numdam.org/articles/10.1016/j.crma.2004.03.026/

[1] A.-M. Aubert, R.J. Plymen, Plancherel measure for GL(n): explicit formulas and Bernstein decomposition, Preprint, 2004

[2] Bernstein, J. Representations of p-adic groups, Harvard University, 1992 (Notes by K.E. Rumelhart)

[3] Bushnell, C.J.; Henniart, G.; Kutzko, P.C. Local Rankin–Selberg convolutions for GLn: explicit conductor formula, J. Amer. Math. Soc., Volume 11 (1998), pp. 703-730

[4] C.J. Bushnell, G. Henniart, P.C. Kutzko, Towards an explicit Plancherel theorem for reductive p-adic groups, Preprint, 2001

[5] Bushnell, C.J.; Kutzko, P.C. The Admissible Dual of GL(n) via Compact Open Subgroups, Ann. of Math. Stud., vol. 129, Princeton University Press, Princeton, NJ, 1993

[6] Bushnell, C.J.; Kutzko, P.C. Smooth representations of reductive p-adic groups: structure theory via types, Proc. London Math. Soc., Volume 77 (1998), pp. 582-634

[7] Kudla, S.S. The local Langlands correspondence, Proc. Symp. Pure Math., Volume 55 (1994), pp. 365-391

[8] Macdonald, I.G. Harmonic analysis on semi-simple groups, Actes Congr. Internat. Math., Tome 2, Nice, 1970, 1971, pp. 331-335

[9] Plymen, R.J. Reduced C * -algebra of the p-adic group GL(n) II, J. Funct. Anal., Volume 196 (2002), pp. 119-134

[10] Shahidi, F. A proof of Langlands conjecture on Plancherel measure; complementary series for p-adic groups, Ann. of Math., Volume 132 (1990), pp. 273-330

[11] Shahidi, F. Langlands' conjecture on Plancherel measures for p-adic groups, Harmonic Analysis on Reductive Groups, Brunswick, ME, 1989, Progr. Math., vol. 101, Birkhäuser Boston, Boston, MA, 1991, pp. 277-295

[12] Waldspurger, J.-L. La formule de Plancherel d'après Harish-Chandra, J. Inst. Math. Jussieu, Volume 2 (2003), pp. 235-333

[13] Zelevinsky, A.V. Induced representations of reductive p-adic groups II, Ann. Sci. École Norm. Sup., Volume 13 (1980), pp. 165-210

Cited by Sources: