Partial Differential Equations
A stochastic differential equation from friction mechanics
Comptes Rendus. Mathématique, Volume 338 (2004) no. 11, pp. 837-842.

The existence and uniqueness of solutions to multivalued stochastic differential equations of the second order on Riemannian manifolds are proved. The class of problem is motivated by rigid body and multibody dynamics with friction and an application to the spherical pendulum with friction is presented.

On démontre l'existence et l'unicité de la solution d'un système d'équations stochastiques multivoques du deuxième ordre sur une variété riemannienne. L'étude de cette classe de problèmes est motivée par la dynamique du corps rigide, et plus généralement des problèmes multicorps. On présente une application au pendule sphérique avec frottement.

Received:
Accepted:
Published online:
DOI: 10.1016/j.crma.2004.03.011
Bernardin, Frédéric 1; Schatzman, Michelle 2; Lamarque, Claude-Henri 1

1 Laboratoire géomatériaux, ENTPE, rue Maurice Audin, 69518 Vaulx-en-Velin, France
2 Laboratoire de mathématiques appliquées de Lyon, CNRS et UCBL, 69622 Villeurbanne cedex, France
@article{CRMATH_2004__338_11_837_0,
     author = {Bernardin, Fr\'ed\'eric and Schatzman, Michelle and Lamarque, Claude-Henri},
     title = {A stochastic differential equation from friction mechanics},
     journal = {Comptes Rendus. Math\'ematique},
     pages = {837--842},
     publisher = {Elsevier},
     volume = {338},
     number = {11},
     year = {2004},
     doi = {10.1016/j.crma.2004.03.011},
     language = {en},
     url = {http://www.numdam.org/articles/10.1016/j.crma.2004.03.011/}
}
TY  - JOUR
AU  - Bernardin, Frédéric
AU  - Schatzman, Michelle
AU  - Lamarque, Claude-Henri
TI  - A stochastic differential equation from friction mechanics
JO  - Comptes Rendus. Mathématique
PY  - 2004
SP  - 837
EP  - 842
VL  - 338
IS  - 11
PB  - Elsevier
UR  - http://www.numdam.org/articles/10.1016/j.crma.2004.03.011/
DO  - 10.1016/j.crma.2004.03.011
LA  - en
ID  - CRMATH_2004__338_11_837_0
ER  - 
%0 Journal Article
%A Bernardin, Frédéric
%A Schatzman, Michelle
%A Lamarque, Claude-Henri
%T A stochastic differential equation from friction mechanics
%J Comptes Rendus. Mathématique
%D 2004
%P 837-842
%V 338
%N 11
%I Elsevier
%U http://www.numdam.org/articles/10.1016/j.crma.2004.03.011/
%R 10.1016/j.crma.2004.03.011
%G en
%F CRMATH_2004__338_11_837_0
Bernardin, Frédéric; Schatzman, Michelle; Lamarque, Claude-Henri. A stochastic differential equation from friction mechanics. Comptes Rendus. Mathématique, Volume 338 (2004) no. 11, pp. 837-842. doi : 10.1016/j.crma.2004.03.011. http://www.numdam.org/articles/10.1016/j.crma.2004.03.011/

[1] Abraham, R.; Marsden, J.E. Foundations of Mechanichs, Addison-Wesley, 1985

[2] Ballard, P. Formulation and well-posedness of the dynamics of rigid bodies with unilateral or frictional constraints, Advances in Mechanics and Mathematics 2002, Kluwer Academic, 2002, pp. 3-88

[3] Bernardin, F. Multivaled stochastic differential equations: convergence of a numerical scheme, Set-Valued Anal., Volume 11 (2003), pp. 393-415

[4] Brézis, H. Opérateurs maximaux monotones et semi-groupes de contractions dans les espaces de Hilbert, Math. Studies, North-Holland, 1973

[5] Cépa, E. Équations différentielles stochastiques multivoques, Séminaire de Probabilités XXIX, Lecture Notes in Math., vol. 1613, Springer, Berlin, 1995, pp. 86-107

[6] Cépa, E. Problème de Skorohod multivoque, Ann. Probab., Volume 26 (1998) no. 2, pp. 500-532

[7] Emery, M. Stochastic Calculus in Manifolds, Springer, 1989

[8] Karatzas, I.; Shreve, E. Brownian Motion and Stochastic Calculus, Springer, 1991

[9] Norris, J.R. A complete differential formalism for stochastic calculus in manifolds, Séminaire de Probabilités XXVI, 1992, pp. 189-209

Cited by Sources: