Functional Analysis
A representation of maximal monotone operators by closed convex functions and its impact on calculus rules
Comptes Rendus. Mathématique, Volume 338 (2004) no. 11, pp. 853-858.

We introduce a new representation for maximal monotone operators. We relate it to previous representations given by Krauss, Fitzpatrick and Martı́nez-Legaz and Théra. We show its usefulness for the study of compositions and sums of maximal monotone operators.

Nous introduisons une représentation nouvelle pour les opérateurs maximaux monotones à l'aide de fonctions convexes. Nous la relions à des représentations dues à Krauss, Fitzpatrick, Martı́nez-Legaz et Théra. Nous montrons son utilité pour obtenir des règles de composition et de somme.

Received:
Accepted:
Published online:
DOI: 10.1016/j.crma.2004.03.017
Penot, Jean-Paul 1

1 Laboratoire de mathématiques appliquées, faculté des sciences, CNRS 2070, BP 1155, 64013 Pau cedex, France
@article{CRMATH_2004__338_11_853_0,
     author = {Penot, Jean-Paul},
     title = {A representation of maximal monotone operators by closed convex functions and its impact on calculus rules},
     journal = {Comptes Rendus. Math\'ematique},
     pages = {853--858},
     publisher = {Elsevier},
     volume = {338},
     number = {11},
     year = {2004},
     doi = {10.1016/j.crma.2004.03.017},
     language = {en},
     url = {http://www.numdam.org/articles/10.1016/j.crma.2004.03.017/}
}
TY  - JOUR
AU  - Penot, Jean-Paul
TI  - A representation of maximal monotone operators by closed convex functions and its impact on calculus rules
JO  - Comptes Rendus. Mathématique
PY  - 2004
SP  - 853
EP  - 858
VL  - 338
IS  - 11
PB  - Elsevier
UR  - http://www.numdam.org/articles/10.1016/j.crma.2004.03.017/
DO  - 10.1016/j.crma.2004.03.017
LA  - en
ID  - CRMATH_2004__338_11_853_0
ER  - 
%0 Journal Article
%A Penot, Jean-Paul
%T A representation of maximal monotone operators by closed convex functions and its impact on calculus rules
%J Comptes Rendus. Mathématique
%D 2004
%P 853-858
%V 338
%N 11
%I Elsevier
%U http://www.numdam.org/articles/10.1016/j.crma.2004.03.017/
%R 10.1016/j.crma.2004.03.017
%G en
%F CRMATH_2004__338_11_853_0
Penot, Jean-Paul. A representation of maximal monotone operators by closed convex functions and its impact on calculus rules. Comptes Rendus. Mathématique, Volume 338 (2004) no. 11, pp. 853-858. doi : 10.1016/j.crma.2004.03.017. http://www.numdam.org/articles/10.1016/j.crma.2004.03.017/

[1] Attouch, H. On the maximality of the sum of two maximal monotone operators, Nonlinear Anal., Volume 5 (1981) no. 2, pp. 143-147

[2] Attouch, H.; Brezis, H. Duality for the sum of convex functions in general Banach spaces (Barroso, J.A., ed.), Aspects of Mathematics and its Applications, North-Holland, Amsterdam, 1986, pp. 125-133

[3] Brezis, H. Opérateurs maximaux monotones et semi-groupes de contractions dans les espaces de Hilbert, North-Holland, Amsterdam, 1971

[4] Burachik, R.S.; Svaiter, B.F. ε-enlargements of maximal monotone operators in Banach spaces, Set-Valued Anal., Volume 7 (1999) no. 2, pp. 117-132

[5] Burachik, R.S.; Svaiter, B.F. Maximal monotone operators, convex functions and a special family of enlargements, Set-Valued Anal., Volume 10 (2002) no. 4, pp. 297-316

[6] Fitzpatrick, S. Representing monotone operators by convex functions, Functional Analysis and Optimization, Workshop and Miniconference, Canberra, Australia, 1988, Proc. Centre Math. Anal. Austral. Nat. Univ., vol. 20, 1988, pp. 59-65

[7] Krauss, E. A representation of maximal monotone operators by saddle functions, Rev. Roumainl Math. Pures Appl., Volume 30 (1985), pp. 823-836

[8] Krauss, E. A representation of arbitrary maximal monotone operators via subgradients of skew-symmetric saddle functions, Nonlinear Anal., Volume 9 (1985), pp. 1381-1399

[9] Krauss, E. Maximal monotone operators and saddle functions. I, Z. Anal. Anwend., Volume 5 (1986), pp. 333-346

[10] Martínez-Legaz, J.E.; Théra, M. A convex representation of maximal monotone operators, J. Nonlinear and Convex Anal., Volume 2 (2001) no. 2, pp. 243-247

[11] Simons, S. Minimax and Monotonicity, Lecture Notes in Math., vol. 1693, Springer, Berlin, 1998

[12] Simons, S. Sum theorems for monotone operators and convex functions, Trans. Amer. Math. Soc., Volume 350 (1998) no. 7, pp. 2953-2972

[13] Svaiter, B.F. A family of enlargements of maximal monotone operators, Set-Valued Anal., Volume 8 (2000) no. 4, pp. 311-328

[14] Zalinescu, C. Convex Analysis in General Vector Spaces, World Scientific, Singapore, 2002

Cited by Sources: