Algebraic Geometry
Quasi-free divisors and duality
Comptes Rendus. Mathématique, Volume 338 (2004) no. 6, pp. 461-466.

We prove a duality theorem for some logarithmic 𝒟-modules associated with a class of divisors. We also give some results for the locally quasi-homogeneous case.

On montre un théorème de dualité pour certains 𝒟-modules logarithmiques associés à une classe de diviseurs. On donne aussi quelques résultats dans le cas localement quasi-homogène.

Received:
Accepted:
Published online:
DOI: 10.1016/j.crma.2004.01.006
Castro-Jiménez, Francisco Jesús 1; Ucha-Enrı́quez, José Marı́a 1

1 Facultad de Matemáticas, Universidad de Sevilla, Apdo. 1160, 41080 Sevilla, Spain
@article{CRMATH_2004__338_6_461_0,
     author = {Castro-Jim\'enez, Francisco Jes\'us and Ucha-Enr{\i}́quez, Jos\'e Mar{\i}́a},
     title = {Quasi-free divisors and duality},
     journal = {Comptes Rendus. Math\'ematique},
     pages = {461--466},
     publisher = {Elsevier},
     volume = {338},
     number = {6},
     year = {2004},
     doi = {10.1016/j.crma.2004.01.006},
     language = {en},
     url = {http://www.numdam.org/articles/10.1016/j.crma.2004.01.006/}
}
TY  - JOUR
AU  - Castro-Jiménez, Francisco Jesús
AU  - Ucha-Enrı́quez, José Marı́a
TI  - Quasi-free divisors and duality
JO  - Comptes Rendus. Mathématique
PY  - 2004
SP  - 461
EP  - 466
VL  - 338
IS  - 6
PB  - Elsevier
UR  - http://www.numdam.org/articles/10.1016/j.crma.2004.01.006/
DO  - 10.1016/j.crma.2004.01.006
LA  - en
ID  - CRMATH_2004__338_6_461_0
ER  - 
%0 Journal Article
%A Castro-Jiménez, Francisco Jesús
%A Ucha-Enrı́quez, José Marı́a
%T Quasi-free divisors and duality
%J Comptes Rendus. Mathématique
%D 2004
%P 461-466
%V 338
%N 6
%I Elsevier
%U http://www.numdam.org/articles/10.1016/j.crma.2004.01.006/
%R 10.1016/j.crma.2004.01.006
%G en
%F CRMATH_2004__338_6_461_0
Castro-Jiménez, Francisco Jesús; Ucha-Enrı́quez, José Marı́a. Quasi-free divisors and duality. Comptes Rendus. Mathématique, Volume 338 (2004) no. 6, pp. 461-466. doi : 10.1016/j.crma.2004.01.006. http://www.numdam.org/articles/10.1016/j.crma.2004.01.006/

[1] Bernstein, I.N. Analytic continuation of generalized functions with respect to a parameter, Funct. Anal. Appl., Volume 6 (1972), pp. 273-285

[2] Björk, J.-E. Rings of Differential Operators, North-Holland, Amsterdam, 1979

[3] Calderón-Moreno, F.J. Logarithmic differential operators and logarithmic de Rham complexes relative to a free divisor, Ann. Sci. École Norm. Sup. (4), Volume 32 (1999) no. 5, pp. 701-714

[4] Calderón-Moreno, F.J.; Mond, D.; Narváez-Macarro, L.; Castro-Jiménez, F.J. Logarithmic cohomology of the complement of a plane curve, Comment. Math. Helv., Volume 77 (2002) no. 1, pp. 24-38

[5] Calderón-Moreno, F.J.; Narváez-Macarro, L. The module 𝒟f s for locally quasi-homogeneous free divisors, Compositio Math., Volume 134 (2002) no. 1, pp. 59-74

[6] Castro-Jiménez, F.J.; Mond, D.; Narváez-Macarro, L. Cohomology of the complement of a free divisor, Trans. Amer. Math. Soc., Volume 348 (1996) no. 8, pp. 3037-3049

[7] Castro-Jiménez, F.J.; Ucha-Enrı́quez, J.M. Explicit comparison theorems for 𝒟-modules, J. Symbolic Comput., Volume 32 (2001) no. 6, pp. 677-685 (Special Issue on Effective Methods in Rings of Differential Operators)

[8] Castro Jiménez, F.J.; Ucha Enrı́quez, J.M. Free divisors and duality for D-modules, Proc. Steklov Inst. Math., Volume 238 (2002), pp. 88-96

[9] Damon, J. Nonlinear sections of nonisolated complete intersections, New Developments in Singularity Theory, Cambridge, 2000, NATO Sci. Ser. II Math. Phys. Chem., vol. 21, Kluwer Academic, Dordrecht, 2001, pp. 405-445

[10] V. Goryunov, D. Mond, Tjurina and Milnor numbers of matrix singularities, Preprint, 2003

[11] Kashiwara, M. On the holonomic systems of linear differential equations II, Invent. Math., Volume 49 (1978) no. 2, pp. 121-135

[12] Orlik, P.; Terao, H. Arrangements and Milnor fiber, Math. Ann., Volume 301 (1995), pp. 211-235

[13] Saito, K. Theory of logarithmic differential forms and logarithmic vector fields, J. Fac. Sci. Univ. Tokyo, Volume 27 (1980), pp. 256-291

[14] T. Torrelli, Sur les germes de fonctions méromorphes définis par un système differentiel d'orde 1, Preprint, 2002

[15] J.M. Ucha-Enrı́quez, Métodos constructivos en álgebras de operadores diferenciales, Ph.D. Thesis, Universidad de Sevilla, 1999

Cited by Sources:

Partially supported by BFM2001-3164 and FQM-333.