Mathematical Problems in Mechanics/Partial Differential Equations
Standing waves on infinite depth
Comptes Rendus. Mathématique, Volume 338 (2004) no. 5, pp. 425-431.

The two-dimensional standing wave problem, for an infinitely deep layer, is considered, based on the formulation of the problem as a second order non local PDE. Despite the presence of infinitely many resonances in the linearized problem, we use the Nash–Moser implicit function theorem to prove the existence of standing waves corresponding to values of the amplitude ε having 0 as a Lebesgue point.

On considère le problème des ondes de gravité stationnaires (le clapotis) en profondeur infinie, mis sous la forme d'une EDP du second ordre non locale. Malgré la dégénérescence infinie du problème linéarisé, nous adaptons le théorème des fonctions implicites de Nash–Moser pour montrer l'existence de vagues stationnaires pour un ensemble de valeurs de l'amplitude ε ayant 0 comme point de Lebesgue.

Received:
Accepted:
Published online:
DOI: 10.1016/j.crma.2004.01.002
Iooss, Gérard 1; Plotnikov, Pavel 2; Toland, John 3

1 IUF, INLN UMR CNRS-UNSA 6618, 1361, route des Lucioles, 06560 Valbonne, France
2 Lavryentyev Inst. of Hydrodynamics, Siberian Div. Russian Acad. Sci., Lavryentyev pr. 15, Novosibirsk 630090, Russia
3 Department of Mathematical Sciences, University of Bath, Bath BA2 7AY, UK
@article{CRMATH_2004__338_5_425_0,
     author = {Iooss, G\'erard and Plotnikov, Pavel and Toland, John},
     title = {Standing waves on infinite depth},
     journal = {Comptes Rendus. Math\'ematique},
     pages = {425--431},
     publisher = {Elsevier},
     volume = {338},
     number = {5},
     year = {2004},
     doi = {10.1016/j.crma.2004.01.002},
     language = {en},
     url = {http://www.numdam.org/articles/10.1016/j.crma.2004.01.002/}
}
TY  - JOUR
AU  - Iooss, Gérard
AU  - Plotnikov, Pavel
AU  - Toland, John
TI  - Standing waves on infinite depth
JO  - Comptes Rendus. Mathématique
PY  - 2004
SP  - 425
EP  - 431
VL  - 338
IS  - 5
PB  - Elsevier
UR  - http://www.numdam.org/articles/10.1016/j.crma.2004.01.002/
DO  - 10.1016/j.crma.2004.01.002
LA  - en
ID  - CRMATH_2004__338_5_425_0
ER  - 
%0 Journal Article
%A Iooss, Gérard
%A Plotnikov, Pavel
%A Toland, John
%T Standing waves on infinite depth
%J Comptes Rendus. Mathématique
%D 2004
%P 425-431
%V 338
%N 5
%I Elsevier
%U http://www.numdam.org/articles/10.1016/j.crma.2004.01.002/
%R 10.1016/j.crma.2004.01.002
%G en
%F CRMATH_2004__338_5_425_0
Iooss, Gérard; Plotnikov, Pavel; Toland, John. Standing waves on infinite depth. Comptes Rendus. Mathématique, Volume 338 (2004) no. 5, pp. 425-431. doi : 10.1016/j.crma.2004.01.002. http://www.numdam.org/articles/10.1016/j.crma.2004.01.002/

[1] G. Airy, Tides and waves, Encyclopedia Metropolitan Art 192, 1845

[2] Amick, C.J.; Toland, J.F. The semi-analytic theory of standing waves, Proc. Roy. Soc. London Ser. A, Volume 411 (1987), pp. 123-138

[3] Cauchy, A. Mémoire sur la théorie des ondes, Mém. Acad. Roy. Sci., Sci. Math. Phys., vol. I, 1827

[4] Dyachenko, A.I.; Kuznetsov, E.A.; Spector, M.D.; Zakharov, V.E. Analytic description of the free surface dynamics of an ideal fluid, Phys. Lett. A, Volume 221 (1996), pp. 73-79

[5] Iooss, G. On the standing wave problem in deep water, J. Math. Fluid Mech., Volume 4 (2002), pp. 155-185

[6] G. Iooss, J.F. Toland, Riemann–Hilbert and variational structure for standing waves, Preprint, 2002

[7] Plotnikov, P.I.; Toland, J.F. Nash–Moser theory for standing water waves, Arch. Rational Mech. Anal., Volume 159 (2001), pp. 1-83

[8] Poisson, S.D. Mémoire sur la théorie des ondes, Mém. Acad. Roy. Sci., Sci. Math. Phys., vol. I, 1816

[9] Stokes, G.G. Notes on hydrodynamics IV – on waves, Cambridge and Dublin Math. J., Volume IV (1849), p. 219

Cited by Sources: