Partial Differential Equations
Stabilization for 1D radiative and reactive viscous gas flows
Comptes Rendus. Mathématique, Volume 338 (2004) no. 2, pp. 127-132.

We consider the compressible 1D-Navier–Stokes system for a viscous heat-conducting gas, with a pressure law p(ρ,θ)=Rρθ+a 3θ 4 and a one-order kinetics to include radiative and reactive processes. The mass force and the ignition phenomenon are also taken into account. For large data and under general assumptions on the heat conductivity, we establish global in time bounds and exponential stabilization for solutions in Lq and H1-norms, by using new Lyapunov functionals.

Nous étudions le système de Navier–Stokes 1D décrivant un fluide compressible conducteur avec contribution radiative, couplé à une cinétique chimique du premier ordre. On tient compte d'un champ de force externe ainsi que d'une température d'ignition. Pour de grandes données et sous des conditions générales sur la conductivité, nous prouvons l'existence globale d'une solution et sa stabilisation en normes Lq et H1, en introduisant de nouvelles fonctionnelles de Lyapunov.

Received:
Accepted:
Published online:
DOI: 10.1016/j.crma.2003.11.013
Ducomet, Bernard 1; Zlotnik, Alexander 2

1 CEA-département de physique théorique et appliquée, BP 12, 91680 Bruyères le Châtel, France
2 Moscow Power Engineering Institute, Krasnokazarmennaja 14, 111250 Moscow, Russia
@article{CRMATH_2004__338_2_127_0,
     author = {Ducomet, Bernard and Zlotnik, Alexander},
     title = {Stabilization for {1D} radiative and reactive viscous gas flows},
     journal = {Comptes Rendus. Math\'ematique},
     pages = {127--132},
     publisher = {Elsevier},
     volume = {338},
     number = {2},
     year = {2004},
     doi = {10.1016/j.crma.2003.11.013},
     language = {en},
     url = {http://www.numdam.org/articles/10.1016/j.crma.2003.11.013/}
}
TY  - JOUR
AU  - Ducomet, Bernard
AU  - Zlotnik, Alexander
TI  - Stabilization for 1D radiative and reactive viscous gas flows
JO  - Comptes Rendus. Mathématique
PY  - 2004
SP  - 127
EP  - 132
VL  - 338
IS  - 2
PB  - Elsevier
UR  - http://www.numdam.org/articles/10.1016/j.crma.2003.11.013/
DO  - 10.1016/j.crma.2003.11.013
LA  - en
ID  - CRMATH_2004__338_2_127_0
ER  - 
%0 Journal Article
%A Ducomet, Bernard
%A Zlotnik, Alexander
%T Stabilization for 1D radiative and reactive viscous gas flows
%J Comptes Rendus. Mathématique
%D 2004
%P 127-132
%V 338
%N 2
%I Elsevier
%U http://www.numdam.org/articles/10.1016/j.crma.2003.11.013/
%R 10.1016/j.crma.2003.11.013
%G en
%F CRMATH_2004__338_2_127_0
Ducomet, Bernard; Zlotnik, Alexander. Stabilization for 1D radiative and reactive viscous gas flows. Comptes Rendus. Mathématique, Volume 338 (2004) no. 2, pp. 127-132. doi : 10.1016/j.crma.2003.11.013. http://www.numdam.org/articles/10.1016/j.crma.2003.11.013/

[1] Bebernes, J.; Eberly, D. Mathematical Problems from Combustion Theory, Springer-Verlag, 1989

[2] Chen, G.-Q. Global solution to the compressible Navier–Stokes equations for a reacting mixture, SIAM J. Math. Anal., Volume 23 (1992), pp. 609-634

[3] Chen, G.-Q.; Hoff, D.; Trivisa, K. On the Navier–Stokes equations for exothermically reacting compressible fluids, Acta Math. Appl. Sinica, Volume 18 (2002), pp. 15-36

[4] Ducomet, B. Hydrodynamical models of gaseous stars, Rev. Math. Phys., Volume 8 (1996), pp. 957-1000

[5] Ducomet, B. A model of thermal dissipation for a one-dimensional viscous reactive and radiative gas, Math. Methods Appl. Sci., Volume 22 (1999), pp. 1323-1349

[6] Ducomet, B.; Zlotnik, A. Stabilization for equations of one-dimensional viscous compressible heat-conducting media with nonmonotone equation of state, J. Differential Equations, Volume 194 (2003), pp. 51-81

[7] B. Ducomet., A. Zlotnik, Lyapunov functional method for 1D viscous radiative and reactive viscous gas dynamics, submitted for publication

[8] Ladyženskaja, O.A.; Solonnikov, V.A.; Ural'ceva, N.N. Linear and Quasilinear Equations of Parabolic Type, American Mathematical Society, Providence, RI, 1968

[9] Qin, Y. Global existence and asymptotic behaviour for a viscous heat-conducting one-dimensional real gas with fixed and constant temperature boundary conditions, Adv. Differential Equations, Volume 7 (2002), pp. 129-154

[10] Secchi, P. On the motion of gaseous stars in presence of radiation, Comm. Partial Differential Equations, Volume 15 (1990), pp. 185-204

[11] Yanagi, S. Asymptotic stability of the solutions to a full one-dimensional system of heat-conducting reactive compressible viscous gas, Japan. J. Indust. Appl. Math., Volume 15 (1998), pp. 423-442

[12] Zlotnik, A.A. Global Lyapunov functionals of the equations for one-dimensional motion of viscous heat-conducting gas, Dokl. Math., Volume 66 (2002), pp. 738-743

[13] Zlotnik, A.A.; Puzanov, S.N. Correctness of the problem of viscous gas burning in the case of nonsmooth data and a semidiscrete method of its solution, Math. Notes, Volume 65 (1999), pp. 793-797

Cited by Sources: