Analyse harmonique/Analyse fonctionnelle
La fonction maximale de Hardy–Littlewood sur une classe d'espaces métriques mesurables
[The Hardy–Littlewood maximal function on some metric measure spaces]
Comptes Rendus. Mathématique, Volume 338 (2004) no. 1, pp. 31-34.

In this Note, we study the behavior of the Hardy–Littlewood maximal function M on cusp manifolds in terms of the growth of the volume of the base space. In particular, we prove that for all 1<p0<+∞ fixed, there exists such a manifold on which M is bounded on Lp for p>p0 but not for 1⩽p<p0.

Dans cette Note, on se propose d'étudier le comportement de la fonction maximale de Hardy–Littlewood, M, sur l'espace cuspidale en termes de la croissance du volume de la base. En particulier, on montre que pour tout 1<p0<+∞ fixé, il existe une variété sur laquelle l'opérateur M est borné sur Lp pour p>p0 mais pas pour 1⩽p<p0.

Received:
Accepted:
Published online:
DOI: 10.1016/j.crma.2003.11.005
Li, Hong-Quan 1

1 Institut für Angewandte Mathematik, Universität Bonn, Wegelerstr. 6, 53115 Bonn, Allemagne
@article{CRMATH_2004__338_1_31_0,
     author = {Li, Hong-Quan},
     title = {La fonction maximale de {Hardy{\textendash}Littlewood} sur une classe d'espaces m\'etriques mesurables},
     journal = {Comptes Rendus. Math\'ematique},
     pages = {31--34},
     publisher = {Elsevier},
     volume = {338},
     number = {1},
     year = {2004},
     doi = {10.1016/j.crma.2003.11.005},
     language = {fr},
     url = {http://www.numdam.org/articles/10.1016/j.crma.2003.11.005/}
}
TY  - JOUR
AU  - Li, Hong-Quan
TI  - La fonction maximale de Hardy–Littlewood sur une classe d'espaces métriques mesurables
JO  - Comptes Rendus. Mathématique
PY  - 2004
SP  - 31
EP  - 34
VL  - 338
IS  - 1
PB  - Elsevier
UR  - http://www.numdam.org/articles/10.1016/j.crma.2003.11.005/
DO  - 10.1016/j.crma.2003.11.005
LA  - fr
ID  - CRMATH_2004__338_1_31_0
ER  - 
%0 Journal Article
%A Li, Hong-Quan
%T La fonction maximale de Hardy–Littlewood sur une classe d'espaces métriques mesurables
%J Comptes Rendus. Mathématique
%D 2004
%P 31-34
%V 338
%N 1
%I Elsevier
%U http://www.numdam.org/articles/10.1016/j.crma.2003.11.005/
%R 10.1016/j.crma.2003.11.005
%G fr
%F CRMATH_2004__338_1_31_0
Li, Hong-Quan. La fonction maximale de Hardy–Littlewood sur une classe d'espaces métriques mesurables. Comptes Rendus. Mathématique, Volume 338 (2004) no. 1, pp. 31-34. doi : 10.1016/j.crma.2003.11.005. http://www.numdam.org/articles/10.1016/j.crma.2003.11.005/

[1] Anker, J.-P.; Damek, E.; Yacoub, C. Spherical analysis on harmonic AN groups, Ann. Scuola Norm. Super. Pisa. Cl. Sci., Volume 23 (1996), pp. 643-679

[2] Burago, D.; Burago, Y.; Ivanov, S. A Course in Metric Geometry, American Mathematical Society, Providence, RI, 2001

[3] Chen, J.-C.; Wang, S.-L. On boundedness of Hardy–Littlewood maximal function operator on Riemannian manifolds, Chinese Ann. Math. Ser. B, Volume 14 (1993), pp. 69-76

[4] Coifman, R.; Weiss, G. Analyse harmonique non-commutative sur certains espaces homogènes, Lecture Notes in Math., vol. 242, Springer, 1971

[5] Li, H.-Q. Analyse sur les variétés cuspidales, Math. Ann., Volume 326 (2003), pp. 625-647

[6] Müller, W. Spectral theory for Riemannian manifolds with cusps and a related trace formula, Math. Nachr., Volume 111 (1983), pp. 197-288

[7] Sawyer, E. Weighted Lebesgue and Lorentz norm inequalities for the Hardy operator, Trans. Amer. Math. Soc., Volume 281 (1984), pp. 329-337

[8] Stein, E.M.; Weiss, G. Introduction to Fourier Analysis on Euclidean Spaces, Princeton Univ. Press, Princeton, NJ, 1971

[9] Strömberg, J.-O. Weak type L1 estimates for maximal functions on noncompact symmetric spaces, Ann. of Math., Volume 114 (1981), pp. 115-126

Cited by Sources: