Partial Differential Equations/Complex Analysis
𝒟-modules associated to 3×3 matrices
Comptes Rendus. Mathématique, Volume 338 (2004) no. 2, pp. 139-144.

We classify regular holonomic 𝒟-modules whose characteristic variety is contained in the union of conormal bundles to the orbits of the group of invertible matrices. The main result is an equivalence between the category of such 𝒟-modules and the one of graded modules of finite type over a Weyl algebra.

On classifie les 𝒟-modules holonômes réguliers dont la variéte caractéristique est contenu dans la réunion des fibrés conormaux aux orbites du groupe des matrices inversibles. Le résultat principal est une équivalence entre la catégorie de tels 𝒟-modules et celle des modules gradués de type fini sur une algèbre de Weyl.

Received:
Accepted:
Published online:
DOI: 10.1016/j.crma.2003.11.003
Nang, Philibert 1

1 Institute of Mathematics, University of Tsukuba, 1-1-1, Tennodai, Tsukuba, Ibaraki, 305-8571, Japan
@article{CRMATH_2004__338_2_139_0,
     author = {Nang, Philibert},
     title = {$ \mathcal{D}$-modules associated to 3{\texttimes}3 matrices},
     journal = {Comptes Rendus. Math\'ematique},
     pages = {139--144},
     publisher = {Elsevier},
     volume = {338},
     number = {2},
     year = {2004},
     doi = {10.1016/j.crma.2003.11.003},
     language = {en},
     url = {http://www.numdam.org/articles/10.1016/j.crma.2003.11.003/}
}
TY  - JOUR
AU  - Nang, Philibert
TI  - $ \mathcal{D}$-modules associated to 3×3 matrices
JO  - Comptes Rendus. Mathématique
PY  - 2004
SP  - 139
EP  - 144
VL  - 338
IS  - 2
PB  - Elsevier
UR  - http://www.numdam.org/articles/10.1016/j.crma.2003.11.003/
DO  - 10.1016/j.crma.2003.11.003
LA  - en
ID  - CRMATH_2004__338_2_139_0
ER  - 
%0 Journal Article
%A Nang, Philibert
%T $ \mathcal{D}$-modules associated to 3×3 matrices
%J Comptes Rendus. Mathématique
%D 2004
%P 139-144
%V 338
%N 2
%I Elsevier
%U http://www.numdam.org/articles/10.1016/j.crma.2003.11.003/
%R 10.1016/j.crma.2003.11.003
%G en
%F CRMATH_2004__338_2_139_0
Nang, Philibert. $ \mathcal{D}$-modules associated to 3×3 matrices. Comptes Rendus. Mathématique, Volume 338 (2004) no. 2, pp. 139-144. doi : 10.1016/j.crma.2003.11.003. http://www.numdam.org/articles/10.1016/j.crma.2003.11.003/

[1] Boutet de Monvel, L. D-modules holonômes réguliers en une variable, Mathématiques et Physique, Séminaire de L'ENS, Progr. Math., vol. 37, 1972–1982, pp. 313-321

[2] Galligo, A.; Granger, M.; Maisonobe, P. D-modules et faisceaux pervers dont le support singulier est un croisement normal, I, Ann. Inst. Fourier, Volume 35 (1983) no. 1, pp. 1-48 (II Astérisque, 130, 1985, pp. 240-259)

[3] Gelfand, S.I.; Khoroshkin, S.M. Algebraic description of certain categories of D-modules, Functionnal. Anal. i Prilozhen., Volume 19 (1985) no. 3, pp. 56-57

[4] Kashiwara, M. On the maximal overdetermined systems of linear partial differential equations I, Publ. Res. Inst. Math. Sci., Volume 10 (1975), pp. 563-579

[5] Kashiwara, M. On holonomic systems of linear partial differential equations II, Invent. Math., Volume 49 (1978), pp. 121-135

[6] Kashiwara, M. Algebraic study of systems of partial differential equations, Mem. Soc. Math. France, Volume 63 (123) (1995) no. 4

[7] Kashiwara, M. D-modules and microlocal calculus, Iwanami Series in Modern Mathematics, Transl. Math. Monographs, vol. 217, American Mathematical Society, 2003

[8] Kashiwara, M.; Kawai, T. On holonomic systems of microdifferential equations III: Systems with regular singularities, Publ. Res. Inst. Math. Sci., Volume 17 (1981), pp. 813-979

[9] Macpherson, R.; Vilonen, K. Perverse sheaves with regular singularities along the curve xn=yn, Comment. Math. Helv., Volume 63 (1988), pp. 89-102

[10] Milnor, J. Singular Points of Complex Hypersurfaces, Annals of Math. Stud., vol. 61, Princeton Univ. Press, 1968

[11] Nang, P. D-modules associated to the group of similitudes, Publ. Res. Inst. Math. Sci., Volume 35 (1999) no. 2, pp. 223-247

Cited by Sources: