Équations aux dérivées partielles
Régularité du rayon hyperbolique
Comptes Rendus. Mathématique, Tome 338 (2004) no. 1, pp. 13-18.

Soit Ω 2 un domaine borné de classe C 2+α ,0<α<1. On montre que si u est la solution maximale de Δu=4exp(2u), qui tend vers +∞ si (x,y)Ω, alors le rayon hyperbolique v=exp(−u) est de classe C2+α jusqu'au bord. La démonstration repose sur de nouvelles estimations de Schauder pour des équations fuchsiennes elliptiques.

Let Ω 2 be a bounded domain of class C 2+α ,0<α<1. We show that if u is the maximal solution of Δu=4exp(2u), which tends to +∞ as (x,y)Ω, then the hyperbolic radius v=exp(−u) is of class C2+α up to the boundary. The proof relies on new Schauder estimates for Fuchsian elliptic equations.

Reçu le :
Publié le :
DOI : 10.1016/j.crma.2003.10.037
Kichenassamy, Satyanad 1

1 Laboratoire de mathématiques (UMR 6056), CNRS & Université de Reims Champagne-Ardenne, Moulin de la Housse, BP 1039, 51687 Reims cedex 2, France
@article{CRMATH_2004__338_1_13_0,
     author = {Kichenassamy, Satyanad},
     title = {R\'egularit\'e du rayon hyperbolique},
     journal = {Comptes Rendus. Math\'ematique},
     pages = {13--18},
     publisher = {Elsevier},
     volume = {338},
     number = {1},
     year = {2004},
     doi = {10.1016/j.crma.2003.10.037},
     language = {fr},
     url = {http://www.numdam.org/articles/10.1016/j.crma.2003.10.037/}
}
TY  - JOUR
AU  - Kichenassamy, Satyanad
TI  - Régularité du rayon hyperbolique
JO  - Comptes Rendus. Mathématique
PY  - 2004
SP  - 13
EP  - 18
VL  - 338
IS  - 1
PB  - Elsevier
UR  - http://www.numdam.org/articles/10.1016/j.crma.2003.10.037/
DO  - 10.1016/j.crma.2003.10.037
LA  - fr
ID  - CRMATH_2004__338_1_13_0
ER  - 
%0 Journal Article
%A Kichenassamy, Satyanad
%T Régularité du rayon hyperbolique
%J Comptes Rendus. Mathématique
%D 2004
%P 13-18
%V 338
%N 1
%I Elsevier
%U http://www.numdam.org/articles/10.1016/j.crma.2003.10.037/
%R 10.1016/j.crma.2003.10.037
%G fr
%F CRMATH_2004__338_1_13_0
Kichenassamy, Satyanad. Régularité du rayon hyperbolique. Comptes Rendus. Mathématique, Tome 338 (2004) no. 1, pp. 13-18. doi : 10.1016/j.crma.2003.10.037. http://www.numdam.org/articles/10.1016/j.crma.2003.10.037/

[1] Bandle, C.; Essén, M. On the solution of quasilinear elliptic problems with boundary blow-up, Sympos. Math., Volume 35 (1994), pp. 93-111

[2] Bandle, C.; Flucher, M. Harmonic radius and concentration of energy; hyperbolic radius and Liouville's equations ΔU=eU and ΔU=U n+2 n-2 , SIAM Rev., Volume 38 (1996), pp. 191-238

[3] Bandle, C.; Marcus, M. On second-order effects in the boundary behavior of large solutions of semilinear elliptic problems, Differential Integral Equations, Volume 11 (1998), pp. 23-34

[4] Benguria, R.; Brezis, H.; Lieb, E.H. The Thomas–Fermi–von Weiszäcker theory of atoms and molecules, Commun. Math. Phys., Volume 79 (1981), pp. 167-180

[5] Caffarelli, L.A.; Friedman, A. Convexity of solutions of semilinear elliptic equations, Duke Math. J., Volume 52 (1985), pp. 431-457

[6] Gilbarg, D.; Trudinger, N. Elliptic Partial Differential Equations of Elliptic Type, Springer, 1983

[7] Keller, J.B. On solutions of Δu=f(u), Comm. Pure Appl. Math., Volume 10 (1957), pp. 503-510

[8] S. Kichenassamy, On a conjecture of Fefferman and Graham, Adv. Math., à paraı̂tre

[9] Kondrat'ev, V.A.; Nikishkin, V.A. Asymptotics, near the boundary, of a solution of a singular boundary-value problem for a semilinear elliptic equation, Differential Equations, Volume 26 (1990), pp. 345-348

[10] Lazer, A.; McKenna, P.J. Asymptotic behavior of boundary blow-up problems, Differential Integral Equations, Volume 7 (1994), pp. 1001-1019

[11] Loewner, C.; Nirenberg, L. Partial differential equations invariant under conformal or projective transformations (Ahlfors, L. et al., eds.), Contributions to Analysis, Academic Press, 1974, pp. 245-272

[12] Marcus, M.; Véron, L. Uniqueness and asymptotic behavior of solutions with boundary blow-up for a class of nonlinear elliptic equations, Ann. Inst. H. Poincaré Anal. Non Linéaire, Volume 14 (1997), pp. 237-274

[13] Osserman, R. On the inequality Δuf(u), Pacific J. Math., Volume 7 (1957), pp. 1641-1647

[14] Posteraro, M.R. On the solution of the equation Δu=eu blowing up on the boundary, C. R. Acad. Sci. Paris, Ser. I, Volume 322 (1996), pp. 445-450

Cité par Sources :